作者:Jacky Yang 链接:https://www.zhihu.com/question/26006703/answer/129209540 来源:知乎 著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 关于深度学习,网上的资料很多,不过貌似大部分都不太适合初学者. 这里有几个原因:1.深度学习确实需要一定的数学基础.如果不用深入浅出地方法讲,有些读者就会有畏难的情绪,因而容易过早地放弃.2.中国人或美国人写的书籍或文章,普遍比较难一些.我不太清楚为什么,不过确实是这样…
参考:https://blog.csdn.net/red_stone1/article/details/78519599 1. 正交化(Orthogonalization) 机器学习中有许多参数.超参数需要调试. 通过每次只调试一个参数,保持其它参数不变而得到的模型某一性能改变是一种最常用的调参策略,我们称之为正交化方法(Orthogonalization). 对应到机器学习监督式学习模型中,可以大致分成四个独立的"功能": Fit training set well on cost…
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最新版本<神经网络与深度学习综述>本综述的特点是以时间排序,从1940年开始讲起,到60-80…
转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最…
7.27 暑假开始后,稍有时间,“搞完”金融项目,便开始跑跑 Deep Learning的程序 Hinton 在Nature上文章的代码 跑了3天 也没跑完 后来Debug 把batch 从200改到20 勉强跑出结果 后来开始看 文章等  感觉晕晕乎乎 又翻到:Deep Learning Tutorials 装Theano等,但是python 代码 Debug真是好生恶心 再后来翻到 UFLDL,看着有Exercise 便做了起来. 用了5天刷了9个Exercises. 大概年后吧,在微博上看…
转载:http://dataunion.org/8463.html?utm_source=tuicool&utm_medium=referral <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智…
机器学习(Machine Learning)&深度学习(Deep Learning)资料 機器學習.深度學習方面不錯的資料,轉載. 原作:https://github.com/ty4z2008/Qix/blob/master/dl.md 原作作者會不斷更新.本文更新至2014-12-21 <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍非常全面.从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep L…
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最新版本<神经网络与深度学习综述>本综述的特点是以时间排序,从1940年开始讲起,到60-80…
最近一直在开发Orchestra Pipeline System,歇两天翻译点文章换换气.这篇文章是无意间看到的,自己从2015年就开始关注机器学习在视效领域的应用了,也曾利用碎片时间做过一些算法移植的工作,所以看到这篇文章的时候很有共鸣,遂决定翻译一下. 原文链接:https://www.fxguide.com/fxfeatured/new-machine-learning-server-for-deep-learning-in-nuke/ 正文: Recent years have seen…
Deep Learning是机器学习中一个非常接近AI的领域,其动机在于建立.模拟人脑进行分析学习的神经网络,近期研究了机器学习中一些深度学习的相关知识,本文给出一些非常实用的资料和心得. Key Words:有监督学习与无监督学习.分类.回归.密度预计.聚类,深度学习,Sparse DBN, 1. 有监督学习和无监督学习 给定一组数据(input,target)为Z=(X,Y). 有监督学习:最常见的是regression & classification. regression:Y是实数ve…
1. ufldl教程√ Andrew Ng的教程,matlab代码. 2. Neural Network and Deep Learning√: 一本未写完的书,非常细致,对基础的概念比如cross entropy cost function, backpropagation有十分详细的介绍,python实现,但是是针对多层神经网络的,没有cnn. 3. Deep Learning:     Bengio大神的书. 4.Learning Deep Architectures for AI 还是Y…
from:http://blog.csdn.net/abcjennifer/article/details/7826917 Deep Learning是机器学习中一个非常接近AI的领域,其动机在于建立.模拟人脑进行分析学习的神经网络,最近研究了机器学习中一些深度学习的相关知识,本文给出一些很有用的资料和心得. Key Words:有监督学习与无监督学习,分类.回归,密度估计.聚类,深度学习,Sparse DBN, 1. 有监督学习和无监督学习 给定一组数据(input,target)为Z=(X,…
Lesson 1 Neural Network and Deep Learning 这篇文章其实是 Coursera 上吴恩达老师的深度学习专业课程的第一门课程的课程笔记. 参考了其他人的笔记继续归纳的. 逻辑回归 (Logistic Regression) 逻辑回归的定义 神经网络的训练过程可以分为前向传播(forward propagation) 和反向传播 (backward propagation) 的 过程.我们通过逻辑回归的例子进行说明. 逻辑回归是一个用于二分类 (binary c…
抱歉,大家,这里不是要分享如何学习deep learning,而是想要记录自己学习deep learning的小历程,算是给自己的一点小动力吧,希望各位业内前辈能够多多指教! 看到有网友提到,Andrew Ng的网页教程UFLDL Tutorial是入门不错的教程,好吧,试着从这里开始吧,加油! UFLDL即Unsupervised Feature Learning and Deep Learning 发现这个网页教程居然有中文版,还是很惊喜的!该网页课程已经稳定的章节包括: 稀疏自编码器.矢量…
http://blog.csdn.net/dinosoft/article/details/50103503 推荐一个deep learning绝佳的入门资料 * UFLDL(Unsupervised Feature Learning and Deep Learning)教程 http://deeplearning.stanford.edu/wiki/index.php/UFLDL%E6%95%99%E7%A8%8B 故意把链接地址也写出来,方便看到来源,嘿嘿. 资料写得相当赞,还有中文版.看懂…
本文转载自:https://blog.csdn.net/xummgg/article/details/69214366 前言 上月导师在组会上交我们用tensorflow写深度学习和卷积神经网络,并把其PPT的参考学习资料给了我们, 这是codelabs上的教程:<TensorFlow and deep learning,without a PhD> 当然登入需要FQ,我也顺带巩固下,做个翻译,不好之处请包含指正. 当然需要安装python,教程推荐使用python3.如果是Mac,可以参考博…
雷锋网(搜索"雷锋网"公众号关注)按:本文由Zouxy责编,全面介绍了深度学习的发展历史及其在各个领域的应用,并解释了深度学习的基本思想,深度与浅度学习的区别和深度学习与神经网络之间的关系. 深度学习,即Deep Learning,是一种学习算法(Learning algorithm),亦是人工智能领域的一个重要分支.从快速发展到实际应用,短短几年时间里,深度学习颠覆了语音识别.图像分类.文本理解等众多领域的算法设计思路,渐渐形成了一种从训练数据出发,经过一个端到端(end-to-en…
from:http://farmingyard.diandian.com/post/2013-04-07/40049536511 来源:十一城 http://elevencitys.com/?p=1854 深度学习是机器学习研究中的一个新的领域,其动机在于建立.模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本.深度学习是无监督学习的一种. 深度学习的概念源于人工神经网络的研究.含多隐层的多层感知器就是一种深度学习结构.深度学习通过组合低层特征形成更加抽象的高层表示…
最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books  by Yoshua Bengio, Ian Goodfellow and Aaron Courville Neural Networks and Deep Learning42 by Michael Nielsen Deep Learning27 by Microsoft Research Deep Learning Tutorial23 by LISA lab, University…
本文笔记旨在概括地讲deep learning的经典应用.内容太大,分三块. --------------------------------------------------------------------------------------------- Content 1. 回想 deep learning在图像上的经典应用 1.1 Autoencoder 1.2 MLP 1.3 CNN<具体的见上一篇CNN> 2. deep learning处理语音等时序信号 2.1 对什么时序…
##机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)---#####注:机器学习资料[篇目一](https://github.com/ty4z2008/Qix/blob/master/dl.md)共500条,[篇目二](https://github.com/ty4z2008/Qix/blob/master/dl2.md)开始更新------#####希望转载的朋友**一定要保留原文链接**,因为这个项目还在继续也在不定期更新.希望看到…
深度学习 - 维基百科,自由的百科全书 https://zh.wikipedia.org/wiki/%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0 深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法. 深度学习是机器学习中一种基于对数据进行表征学习的算法.观测值(例如一幅图像)可以使用多种方式来表示,如每个像素强度值的向量,或者更抽象地表示成一系列边.特定形状的区域等.而使用某些特…
一.文章来由 网络好文章太多,而通过转载文章做资料库太麻烦,直接更新这个博文. 二.汇总 1.台大李宏毅老师的课 正片:http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML17.html http://speech.ee.ntu.edu.tw/~tlkagk/courses_MLDS17.html 深入浅出讲解deep learning 顺带附上李老师的<一天搞懂deep learning>的slides地址:https://link.zhihu.com…
Minerva:一个可扩展的高效的深度学习训练平台 zoerywzhou@gmail.com http://www.cnblogs.com/swje/ 作者:Zhouwan  2015-12-1 声明 1)本文是关于Minerva简介的一篇译文.具体引用的资料请看参考文献.具体的版本声明也参考原文献. 2)本文仅供学术交流,非商用.所以每一部分具体的参考资料并没有详细对应.如果某部分不小心侵犯了大家的利益,还望海涵,并联系博主删除. 3)本人刚接触深度学习方向,专业术语了解甚少,斗胆翻译了这篇文…
在之前的强化学习文章里,我们讲到了经典的MDP模型来描述强化学习,其解法包括value iteration和policy iteration,这类经典解法基于已知的转移概率矩阵P,而在实际应用中,我们很难具体知道转移概率P.伴随着这类问题的产生,Q-Learning通过迭代来更新Q表拟合实际的转移概率矩阵 P,实现了强化学习在大多数实际场景中的应用.但是,在很多情况下,诸多场景下的环境状态比较复杂,有着极大甚至无穷的状态空间,维护这一类问题的Q表使得计算代价变得很高,这时就有了通过Deep网络来…
聊天机器人又被称为会话系统,已经成为一个热门话题,许多公司都在这上面的投入巨大,包括微软,Facebook,苹果(Siri),Google,微信,Slack.许多创业公司尝试通过多种方式来改变与消费者服务方式.许多公司希望开发对话机器人能够自然地和人进行交流,并且为了实现这个目标,很多公司声称使用了自然语言处理(NLP)和深度学习技术.但是很多时候对AI的夸大宣传,让人民很难分清事实和美好的想象. 接下来的是回顾在会话系统中使用的深度学习技术,了解现在的进展情况,哪些在近期是可能的,哪些是不可能…
蒙特卡罗法 在介绍Q-learing算法之前,我们还是对蒙特卡罗法(MC)进行一些介绍.MC方法是一种无模型(model-free)的强化学习方法,目标是得到最优的行为价值函数\(q_*\).在前面一篇博客中,我们所介绍的动态规划算法则是一种有模型的算法.那么问题来了,什么是模型(model)?模型其实就是我们在第一篇博客:DQN(Deep Q-learning)入门教程(一)之强化学习介绍种所介绍的状态转化模型: \(P_{ss'}^a\). 在动态规划解决问题的时候,我们是已知\(P_{ss…
简介 DQN--Deep Q-learning.在上一篇博客DQN(Deep Q-learning)入门教程(四)之Q-learning Play Flappy Bird 中,我们使用Q-Table来储存state与action之间的q值,那么这样有什么不足呢?我们可以将问题的稍微复杂化一点了,如果在环境中,State很多,然后Agent的动作也很多,那么毋庸置疑Q-table将会变得很大很大(比如说下围棋),又或者说如果环境的状态是连续值而不是离散值,尽管我们可以将连续值进行离散化,但是又可能…
http://m.blog.csdn.net/blog/wu010555688/24487301 本文整理了网上几位大牛的博客,详细地讲解了CNN的基础结构与核心思想,欢迎交流. [1]Deep learning简介 [2]Deep Learning训练过程 [3]Deep Learning模型之:CNN卷积神经网络推导和实现 [4]Deep Learning模型之:CNN的反向求导及练习 [5]Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN [6]Deep Learn…
Game Theory Reveals the Future of Deep Learning Carlos E. Perez Deep Learning Patterns, Methodology and Strategy @ IntuitionMachine.com 译自:https://medium.com/intuitionmachine/game-theory-maps-the-future-of-deep-learning-21e193b0e33a#.2vjbrl5di 若你一直fo…