线性可分支持向量机与软间隔最大化--SVM 给定线性可分的数据集 假设输入空间(特征向量)为,输出空间为. 输入 表示实例的特征向量,对应于输入空间的点: 输出 表示示例的类别. 我们说可以通过间隔最大化或者等价的求出相应的凸二次规划问题得到的分离超平面 以及决策函数: 但是,上述的解决方法对于下面的数据却不是很友好, 例如,下图中黄色的点不满足间隔大于等于1的条件 这样的数据集不是线性可分的, 但是去除少量的异常点之后,剩下的点都是线性可分的, 因此, 我们称这样的数据集是近似线性可分的. 对…
模型 超平面 我们称下面形式的集合为超平面 \[\begin{aligned} \{ \bm{x} | \bm{a}^{T} \bm{x} - b = 0 \} \end{aligned} \tag{1} \] 其中\(\bm{a} \in \mathbb{R}^n\)且\(\bm{a} \ne \bm{0} , \bm{x}\in \mathbb{R}^n, b \in \mathbb{R}\).解析地看,超平面是关于\(\bm{x}\)的非平凡线性方程的解空间(因此是一个仿射集,仿射集和凸集…
定义:给定线性可分训练数据集,通过间隔最大化或等价的求解凸二次规划问题学习获得分离超平面和分类决策函数,称为线性可分支持向量机. 目录: • 函数间隔 • 几何间隔 • 间隔最大化 • 对偶算法 1.函数间隔 考虑分类算法的两个方面:确信度 + 正确性 确信度:用点到分离超平面的距离表示,间接表示为$w ⋅x_i+b$,分类的结果有多大的自信保证它是正确的: 正确性:$y_i$  与 $w ⋅x_i+b$的符号是否一致,表征分类是否正确: 结合以上两点, 某一实例点的函数间隔的定义即:$γ ̂_…
1. 模型 1.1 超平面 我们称下面形式的集合为超平面 \[\begin{aligned} \{ \bm{x} | \bm{a}^{T} \bm{x} - b = 0 \} \end{aligned} \tag{1} \] 其中\(\bm{a} \in \mathbb{R}^n\)且\(\bm{a} \ne \bm{0} , \bm{x}\in \mathbb{R}^n, b \in \mathbb{R}\).解析地看,超平面是关于\(\bm{x}\)的非平凡线性方程的解空间(因此是一个仿射集…
线性可分支持向量机--SVM (1) 给定线性可分的数据集 假设输入空间(特征向量)为,输出空间为. 输入 表示实例的特征向量,对应于输入空间的点: 输出 表示示例的类别. 线性可分支持向量机的定义: 通过间隔最大化或者等价的求出相应的凸二次规划问题得到的分离超平面 以及决策函数: *什么是间隔最大化呢? 首先需要定义间隔, 下面介绍了函数间隔和几何间隔,几何间隔可以理解为训练点到超平面的距离, 二维中就是点到直线的距离,我们要做的就是最小化几何间隔. 函数间隔和几何间隔 函数间隔 给定训练数据…
参考文献:https://blog.csdn.net/Dominic_S/article/details/83002153 1.硬间隔最大化 对于以上的KKT条件可以看出,对于任意的训练样本总有ai=0或者yif(xi) - 1=0即yif(xi) = 11)当ai=0时,代入最终的模型可得:f(x)=b,样本对模型没有贡献2)当ai>0时,则必有yif(xi) = 1,注意这个表达式,代表的是所对应的样本刚好位于最大间隔边界上,是一个支持向量,这就引出一个SVM的重要性质:训练完成后,大部分的…
引入:1. 数据线性不可分:2. 映射到高维依然不是线性可分3. 出现噪声.如图: 对原始问题变形得到#2: 进行拉格朗日转换: 其中α和r是拉格朗日因子,均有不小于0的约束.按照之前的对偶问题的推导方式,先针对w,b最小化,然后再针对α最大化,得到新的对偶问题: 求解得到α之后,w仍然按公式给出,但是截距b的计算方式要改变. KKT中的互补条件也变为了:[有待深入理解其含义] KKT的理解:[首先得注意:(1)αi与样本(x(i),y(i))是一一对应的:(2)αi>=0] 由对w的偏导得到:…
参考链接: 1.https://blog.csdn.net/TaiJi1985/article/details/75087742 2.李航<统计学习方法>7.1节 线性可分支持向量机与硬间隔最大化 3.https://zhuanlan.zhihu.com/p/45444502,第三部分 手推SVM 本文目标:理解SVM的原始目标,即间隔最大化,并将其表示为约束最优化问题的转换道理. 背景知识:假设已经知道了分离平面的参数w和b,函数间隔γ',几何间隔γ,不懂的可以参考书本及其它. 为了将线性可…
线性可分支持向量机 给定线性可分的训练数据集,通过间隔最大化或等价地求解相应的凸二次规划问题学习到的分离超平面为 \[w^{\ast }x+b^{\ast }=0\] 以及相应的决策函数 \[f\left( x\right) =sign\left(w^{\ast }x+b^{\ast } \right)\] 称为线性可分支持向量机 如上图所示,o和x分别代表正例和反例,此时的训练集是线性可分的,这时有许多直线能将两类数据正确划分,线性可分的SVM对应着能将两类数据正确划分且间隔最大的直线. 函数…
1. 感知机原理(Perceptron) 2. 感知机(Perceptron)基本形式和对偶形式实现 3. 支持向量机(SVM)拉格朗日对偶性(KKT) 4. 支持向量机(SVM)原理 5. 支持向量机(SVM)软间隔 6. 支持向量机(SVM)核函数 1. 前言 在前一篇支持向量机(SVM)原理中,我们对线性可分SVM的模型和损失函数优化做了总结.但是大家有没发现,之前的文章介绍的支持向量机会无法处理一些情况,比如在有0,1两类,在0类的中间出现了几个1类的异常点,这样的话要之前最原始的SVM…