cpu和gpu关于图像的分工】的更多相关文章

cpu: 图像IO导入: 图像生成: 部分图片解码: gpu: 几何图像表示: 几何图像组合等处理: 部分格式图像解码: 图像的光学.几何学操控:…
1 前言 之前在写影像融合算法的时候,免不了要实现将多光谱影像重采样到全色大小.当时为了不影响融合算法整体开发进度,其中重采样功能用的是GDAL开源库中的Warp接口实现的. 后来发现GDAL Warp接口实现的多光谱到全色影像的重采样主要存在两个问题:1 与原有平台的已有功能不兼容,产生冲突:2 效率较低.因此,决定重新设计和开发一个这样的功能,方便后期软件系统的维护等. 2 图像重采样 图像处理从形式上来说主要包括两个方面:1 单像素或者邻域像素的处理,比如影像的相加或者滤波运算等:2 图像…
CPU和GPU实现julia           主要目的是通过对比,学习研究如何编写CUDA程序.julia的算法还是有一定难度的,但不是重点.由于GPU实现了也是做图像识别程序,所以缺省的就是和OPENCV结合起来. 一.CPU实现(julia_cpu.cpp)       //julia_cpu 采用cpu实现julia变换 #.;     );     );        cuComplex c(.,.);    cuComplex a(jx,jy);    ;i;i)        {…
个人认为CPU和GPU各有自己的适应领域.CPU(Central Processing Unit)计算核心较少,通常是双核.四核.八核,但是拥有大量的共享缓存.预测.乱序执行等优化,可以做逻辑非常复杂的计算任务.这一点就当前的GPU来说,仍然难以做到.会牺牲大量的性能.造成大量的能耗开销,而且增加了程序员开发GPU程序的难度. GPU(Graphice Processing Unit),天生拥有大量的处理单元,但是代价是较少的控制单元,就如同它的名字一样,适合图形图像相关的计算,图形图像中每一个…
渲染流水线 1)应用阶段(CPU处理) 首先,准备好场景数据(摄像机位置,视锥体,模型和光源等) 接着,做粗粒度剔除工作. 最后,设置好每个模型的渲染状态(使用的材质,纹理,shader等) 这一阶段最重要的是渲染所需要的几何信息,即渲染土元,渲染图元可以是点,线,三角面等. a.把数据加载到显存中 b.设置渲染状态,通俗说这些状态定义了场景中的网格是怎样被渲染的. c.调用DrawCall,一个命令,CPU通知GPU.(这个命令仅仅会指向一个需要被渲染的图元列表,并不会包含材质信息,因为在上一…
人工智能包括三个要素:算法,计算和数据.人工智能算法目前最主流的是深度学习.计算所对应的硬件平台有:CPU.GPU.FPGA.ASIC.由于移动互联网的到来,用户每天产生大量的数据被入口应用收集:搜索.通讯.我们的QQ.微信业务,用户每天产生的图片数量都是数亿级别,如果我们把这些用户产生的数据看成矿藏的话,计算所对应的硬件平台看成挖掘机,挖掘机的挖掘效率就是各个计算硬件平台对比的标准. 最初深度学习算法的主要计算平台是 CPU,因为 CPU 通用性好,硬件框架已经很成熟,对于程序员来说非常友好.…
重开一个环境(内存.资源.上下文)来完成(部分)图片的绘制 指的是GPU在当前屏幕缓冲区以外新开辟一个缓冲区进行渲染操作 意为离屏渲染,指的是GPU在当前屏幕缓冲区以外新开辟一个缓冲区进行渲染操作. 红色代表GPU需要做额外的工作来渲染View,绿色代表GPU无需做额外的工作来处理bitmap. UIView和CALayer关系 UIView继承自UIResponder,可以处理系统传递过来的事件,如:UIApplication.UIViewController.UIView,以及所有从UIVi…
http://blog.csdn.net/xiaolang85/article/details/51500340 有网友在网上提问:“为什么现在更多需要用的是 GPU 而不是 CPU,比如挖矿甚至破解密码? ”以下是比较准确靠谱的回答: 1.现在更多被需要的依然是CPU,只是GPU在大规模并发计算中体现出其一技之长所以应用范围逐渐变得广泛,并成为近些年的热点话题之一. 为什么二者会有如此的不同呢?首先要从CPU和GPU的区别说起. CPU和GPU之所以大不相同,是由于其设计目标的不同,它们分别针…
OpenCL OpenCL(全称Open Computing Language,开放运算语言)是第一个面向异构系统通用目的并行编程的开放式.免费标准,也是一个统一的编程环境,便于软件开发人员为高性能计算服务器.桌面计算系统.手持设备编写高效轻便的代码,而且广泛适用于多核心处理器(CPU).图形处理器(GPU).Cell类型架构以及数字信号处理器(DSP)等其他并行处理器,在游戏.娱乐.科研.医疗等各种领域都有广阔的发展前景. OpenCL是一个为异构平台编写程序的框架,此异构平台可由CPU,GP…
转:https://blog.csdn.net/xiaolang85/article/details/51500340 有网友在网上提问:“为什么现在更多需要用的是 GPU 而不是 CPU,比如挖矿甚至破解密码? ”以下是比较准确靠谱的回答: 1.现在更多被需要的依然是CPU,只是GPU在大规模并发计算中体现出其一技之长所以应用范围逐渐变得广泛,并成为近些年的热点话题之一. 为什么二者会有如此的不同呢?首先要从CPU和GPU的区别说起. CPU和GPU之所以大不相同,是由于其设计目标的不同,它们…