题目:https://www.luogu.org/problemnew/show/P3834 无法忍受了,我要写主席树! 解决区间第 k 大查询问题,可以用主席树,像前缀和一样建立 n 棵前缀区间的权值线段树: 然后 n 棵线段树可以共用一些节点: 线段树的 sum 可以相减,利用这个查询即可: 什么嘛,主席树也没我想得那么难(蛮简单的)! 代码如下: #include<iostream> #include<cstdio> #include<cstring> #incl…
主席树可以存储线段树的历史状态,空间消耗很大,一般开45n即可 #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cstdlib> #include <queue> #define lson l, mid #define rson mid+1, r #define ll long long using name…
题面 这题好水的说~很明显就是主席树的大板子 然而我交了3遍才调完所有的BUG,开好足够的数组,卡掉大大的常数: 针对与每次操作,change()会创建新节点,而ask()虽然也会更新左右儿子的节点编号,但并不会创建除根节点以外的点: 处理好以上change()和ask()的细节就可以轻松地切掉这道题: #include <bits/stdc++.h> #define mid (l+r)/2 using namespace std; int n,m; ]; int cnt; ]; ]; ];…
题目: 洛谷2839 分析: 记\(s_i\)表示原序列中第\(i\)大的数. 考虑对于任意一个区间\([a,b]\),设它的中位数为\(s_m\),那么这个区间内大于等于\(s_m\)的数和小于\(s_m\)的数的数量要么相等,要么小于比大于等于多一个.后一种情况当且仅当\(s_m\in [a,b]\)且序列长度为奇数. 考虑如果已知一个数\(s_i\),如何判断是否存在区间\([e,f]\)(\(e\in [a,b],f\in [c,d]\))使\([e,f]\)的中位数大于等于\(s_i\…
LOJ 题目链接 & 洛谷题目链接 题意:商店里有 \(n\) 杯果汁,第 \(i\) 杯果汁有美味度 \(d_i\),单价为 \(p_i\) 元/升.最多可以添加 \(l_i\) 升.有 \(m\) 次询问,每次给出两个数 \(G,L\),你可以将商店里的一些果汁混合起来,使得他们的总体积不小于 \(L\) 升,总价格不超过 \(G\) 元,问:选择的果汁中美味度最小值的最大值是多少. \(1 \leq n,m \leq 10^5\),\(1 \leq d_i,p_i,l_i \leq 10^…
题目描述 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权.其中lastans是上一个询问的答案,初始为0,即第一个询问的u是明文. 输入输出格式 输入格式: 第一行两个整数N,M. 第二行有N个整数,其中第i个整数表示点i的权值. 后面N-1行每行两个整数(x,y),表示点x到点y有一条边. 最后M行每行两个整数(u,v,k),表示一组询问. 输出格式: M行,表示每个询问的答案. 输入输出样例 输入样例#1:…
题面 洛谷 题解 考虑暴力,对于询问中的一段区间\([l,r]\),我们先将其中的数升序排序,假设当前可以表示出\([1,k]\)目前处理\(a_i\),假如\(a_i>k+1\),则答案就是\(k+1\),否则,调整右界到\(k+a_i\). 考虑如何优化,还是扫到了\([1,k]\),假设\(ans=k+1\),如果所有小于等于\(ans\)的数的和\(sum\)起来大于等于\(ans\),则一定可以将\(k\)更新成\(sum\).否则直接输出就好了. 以上这个过程很明显可以用主席树维护,…
正解:主席树 解题报告: 传送门$QwQ$ 本来以为是道入门无脑板子题,,,然后康了眼数据范围发现并没有我想像的那么简单昂$kk$ 这时候看到$n$的范围不大,显然考虑离散化?但是又感觉似乎布星?因为询问的是最小没有出现昂$kk$ 这时候考虑到答案显然要么是0要么是$a_{i}+1$?所以只用把$0,a_{i},a_{i}+1$离散化掉就成$QwQ$ 然后就主席树板子了$QwQ$?开权值线段树存这个位置当前最后一次出现的位置,然后每次就是找最小的最后一次出现位置<l的数就成$QwQ$ $over…
正解:主席树 解题报告: 传送门! 首先考虑如果是单点修改,那就是个线段树板子嘛$QwQ$ 然后现在是区间修改,对于区间修改,显然就考虑差分下,就变成单点修改辣$QwQ$ 同时单点查询前$k$小也就变成了区间查询前$k$小 于是就主席树套下就好$QwQ$ 详细点儿说下趴$QwQ$.先考虑如果查询的不是前$k$小,而是问这个点的$\sum p$,怎么做$QwQ$? 就考虑先转化成单点修改,然后区间查询算出$[1,x]$的所有数之和就成$QwQ$ 然后现在问前$k$小?于是就查询前$k$个数的和就成…
传送门 突然发现好像没有那么难……https://blog.csdn.net/stone41123/article/details/78167288 首先有两个操作,一个查询,一个连接 查询的话,直接在树上建主席树 然后难点在于连接 用启发式合并就可以了(想了半天都没想出来) 每次合并时,我们把小的树接到大的上,然后dfs一遍小的树,更新信息 然后注意数组……别太小也别太大……(被数组大小坑了好几次提交) //minamoto #include<bits/stdc++.h> using nam…