Legal or Not Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 6580    Accepted Submission(s): 3088 Problem Description ACM-DIY is a large QQ group where many excellent acmers get together. It is…
Legal or Not Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 5906    Accepted Submission(s): 2734 Problem Description ACM-DIY is a large QQ group where many excellent acmers get together. It is…
HDU.3342 Legal or Not (拓扑排序 TopSort) 题意分析 裸的拓扑排序 根据是否成环来判断是否合法 详解请移步 算法学习 拓扑排序(TopSort) 代码总览 #include <iostream> #include <iostream> #include <cstdio> #include <algorithm> #include <cstring> #include <sstream> #include…
题目描述 给出一张 $n$ 个点 $m$ 条边的有向图,边权为非负整数.求满足路径长度小于等于 $1$ 到 $n$ 最短路 $+k$ 的 $1$ 到 $n$ 的路径条数模 $p$ ,如果有无数条则输出 $-1$ . 输入 第一行包含一个整数 $T$ , 代表数据组数. 接下来 $T$ 组数据,对于每组数据: 第一行包含四个整数 $N,M,K,P$ ,每两个整数之间用一个空格隔开. 接下来 $M$ 行,每行三个整数 $a_i,b_i,c_i$ ,代表编号为 $a_i,b_i$ 的点之间有一条权值为…
题面 传送门:https://www.luogu.org/problemnew/show/P3953 Solution 这是一道神题 首先,我们不妨想一下K=0,即求最短路方案数的部分分. 我们很容易可以想到一个做法,就是魔改迪杰斯特拉做法: 如果一个点可以更新到达其他点的距离,那个点的方案数就是这个点的方案数:如果一个点所更新出来的距离和之前的相等,那个点的方案数加等当前点的方案数. 用式子可以表现为: f[j]=f[i] (dis[j]>dis[i]+x)   f[j]+=f[i] (dis…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3342 题目大意:n个点,m条有向边,让你判断是否有环. 解题思路:裸题,用dfs版的拓扑排序直接套用即可. 代码: #include<iostream> #include<cstdio> #include<cstring> using namespace std; ; int n,m; int vis[N]; bool G[N][N]; bool dfs(int u){ v…
Legal or Not Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 11382    Accepted Submission(s): 5346 Problem Description ACM-DIY is a large QQ group where many excellent acmers get together. It is…
一道极其水的拓扑排序……但是我还是要把它发出来,原因很简单,连错12次…… 题意也很裸,前面的废话不用看,直接看输入 输入n, m表示从0到n-1共n个人,有m组关系 截下来m组,每组输入a, b表示a指向b,或者b指向a也行. 输入n == 0时结束 如果可以拓扑排序,输出"YES",否则输出"NO".每组输出占一行. 给两种代码吧,一种用邻接矩阵,另一种我也不知道叫什么好…… 邻接矩阵—— #include <cstdio> #include <…
<题目链接> 题目大意: 给你 0~n-1 这n个点,然后给出m个关系 ,u,v代表u->v的单向边,问你这m个关系中是否产生冲突. 解题分析: 不难发现,题目就是叫我们判断图中是否存在环,存在环,则说明冲突.所以我们对图进行拓扑排序,如果该图中所有的点均能在拓扑排序中成为入度为0的点,则说明不含环(因为环中的点不可能入度为0). #include <cstdio> #include <cstring> #define rep(i,s,t) for(int i=s…
重边这样的东西   仅仅能呵呵 就是裸裸的拓扑排序 假设恩可以排出来就YES . else  NO 仅仅须要所有搜一遍就好了 #include <cstdio> #include <cstring> int mapp[101][101]; int d[101]; int n,m; int a,b; int main() { while(scanf("%d%d",&n,&m)!=EOF) { if(n==0)break; memset(d,0,si…