Burnside 引理与 Pólya 定理】的更多相关文章

目录 @0 - 参考资料@ @1 - 问题引入@ @2 - burnside引理@ @3 - pólya定理@ @4 - pólya定理的生成函数形式@ @0 - 参考资料@ 博客1 @1 - 问题引入@ 一个经典问题: 一正方形分成4格,2着色,有多少种方案? 其中,经过转动相同的图象算同一方案. 假如不考虑转动,各种方案如下所示. 首先可以发现,转动的角度只有 4 种:0°,90°,180°,270°. 然后可以得到,每一次转动可以将一个方案唯一映射成另一个方案(可以是自身). 于是我们可以…
这个计数定理在考虑对称的计数中非常有用 先给出这个定理的描述,虽然看不太懂: 在一个置换群G={a1,a2,a3……ak}中,把每个置换都写成不相交循环的乘积. 设C1(ak)是在置换ak的作用下不动点的个数,也就是长度为1的循环的个数.通过上述置换的变换操作后可以相等的元素属于同一个等价类 那么等价类的个数就等于: 然后理解一下公式 一正方形分成4格,2着色,有多少种方案?其中,经过转动相同的图象算同一方案. 关于转动,一共有四种置换方法,也就是|G|=4 不动(360度):a1=(1)(2)…
群 群的定义 在数学中,群是由一种集合以及一个二元运算所组成的,符合"群公理"的代数结构. 一个群是一个集合 \(G\) 加上对 \(G\) 的二元运算.二元运算用 \(\cdot\) 表示,它结合了任意两个元素 \(a\) 和 \(b\) 形成了一个属于 \(G\) 的元素,记为 \(a\cdot b\). 群的公理化定义 群公理包含下述四个性质(有时略去封闭性,只有三个性质).若非空集合 \(G\) 和 \(G\) 上的运算 \(\cdot\) 构成的代数结构 \((G,\cdot…
定义简化版: 置换,就是一个1~n的排列,是一个1~n排列对1~n的映射 置换群,所有的置换的集合. 经常会遇到求本质不同的构造,如旋转不同构,翻转交换不同构等. 不动点:一个置换中,置换后和置换前没有区别的排列 Burnside引理:本质不同的方案数=每个置换下不动点的个数÷置换总数(一个平均值) Polya定理:一个置换下不动点的个数=颜色^环个数.(辅助Burnside引理,防止枚举不动点复杂度过高) 这篇文章写得很详细了(具体的在此不说了): Burnside引理与Polya定理 **特…
#Burnside引理与polay定理 引入概念 1.置换 简单来说就是最元素进行重排列 是所有元素的异议映射,即\([1,n]\)映射到\([1,n]\) \[ \begin{pmatrix} 1&2&i \ldots n \\ a_{1} & a_{2}&a_{i} \ldots a_{n} \end{pmatrix}\] 比如,把正方体绕中心旋转90度,可以看做四个顶点的一个置换 (1)置换可以构成换:对于元素连一条有向边,连到置换中映射的元素,会构成n个环,(循环)…
感觉这两个东西好鬼畜= = ,考场上出了肯定不会qwq.不过还是学一下吧用来装逼也是极好的 群的定义 与下文知识无关.. 给出一个集合$G = \{a, b, c, \dots \}$和集合上的二元运算"$*$",并满足 (1).封闭性:$\forall a, b \in G, \exists c \in G, a * b = c$ (2).结合律:$\forall a, b, c \in G, (a * b) * c = a * (b * c)$ (3).单位元:$\exists e…
原文链接www.cnblogs.com/zhouzhendong/p/Burnside-Polya.html 问题模型 有一个长度为 $n$ 的序列,序列中的每一个元素有 $m$ 种取值. 如果两个序列循环同构,那么我们称这两个序列等价. 求两两不等价的序列个数. Burnside引理 假设有若干个置换 $P_1,P_2,\cdots$ ,设由这些置换生成的置换群为 $Q$ .如果序列 A 可以通过一个 $Q$ 中的置换变成序列 B,那么我们认为 A 和 B 等价. 对于一个置换 $P$ ,如果…
[POJ2888]Magic Bracelet 题意:一个长度为n的项链,有m种颜色的珠子,有k个限制(a,b)表示颜色为a的珠子和颜色为b的珠子不能相邻,求用m种珠子能串成的项链有多少种.如果一个项链在旋转后与另一个项链相同,则认为这两串珠子是相同的. $n\le 10^9,m\le 10,k\le \frac{m(m-1)} 2 $ 题解:好题. 依旧回顾从Burnside引理到Pólya定理的推导过程.一个置换中的不动点要满足它的所有循环中的点颜色都相同,那么在旋转i次的置换中,循环有gc…
[BZOJ1004][HNOI2008]Cards 题意:把$n$张牌染成$a,b,c$,3种颜色.其中颜色为$a,b,c$的牌的数量分别为$sa,sb,sc$.并且给出$m$个置换,保证这$m$个置换加上本身的置换能构成一个置换群,两种染色方案被认为是相同的当且仅当一种方案可以通过某个置换变成另一种.求不同的染色方案数.答案对$P$取模. $sa,sb,sc\le 20,m\le 60$ 题解:这里对每种颜色都有一个限制,怎么办呢? 回顾从Burnside引理到Pólya定理的推导过程. 如果…
题目来源:UVa 10294 Arif in Dhaka (First Love Part 2) 题意:n颗珠子t种颜色 求有多少种项链和手镯 项链不可以翻转 手镯可以翻转 [分析] 要开始学置换了. 置换是什么呢?  置换的广义概念在不同语境下有不同的形式定义: 在集合论中,一个集合的置换是从该集合映至自身的双射:在有限集的情况,便与上述定义一致. 在组合数学中,置换一词的传统意义是一个有序序列,其中元素不重复,但可能有阙漏.例如1,2,4,3可以称为1,2,3,4,5,6的一个置换,但是其中…
最近,研究了两天的Burnside引理和Polya定理之间的联系,百思不得其解,然后直到遇到下面的问题: 对颜色限制的染色 例:对正五边形的三个顶点着红色,对其余的两个顶点着蓝色,问有多少种非等价的着色? 其中置换的方法有旋转 \(0^{\circ}, 72^{\circ}, 144^{\circ}, 216^{\circ}, 288^{\circ}\), 穿过一个点做对称轴进行翻转. Burnside引理的证明 那么,在解决这个问题之间,我们首先要定义和证明一些东西: 在集合\(X\)的置换群…
题目描述 用三种颜色染一个长度为 $n=Sr+Sb+Sg$ 序列,要求三种颜色分别有 $Sr,Sb,Sg$ 个.给出 $m$ 个置换,保证这 $m$ 个置换和置换 ${1,2,3,...,n\choose 1,2,3,...,n}$ 构成一个置换群,求置换后不同构的序列个数模 $p$ . $0\le Sr,Sb,Sg\le 20,0\le m\le 60,m+1\le p\le 100$ ,$p$ 是质数. 输入 第一行输入 5 个整数:Sr,Sb,Sg,m,p(m<=60,m+1<p<…
置换群 设\(N\)表示组合方案集合.如用两种颜色染四个格子,则\(N=\{\{0,0,0,0\},\{0,0,0,1\},\{0,0,1,0\},...,\{1,1,1,1\}\}\),\(|N|=2^4\). 对于\(N\)上的所有置换,它们组成的群称为置换群,记为\(G\).\(G\)中任意两个置换的积仍在\(G\)中. Burnside引理 又称轨道计数定理.Burnside计数定理.Cauchy-Frobenius定理.Pólya-Burnside引理. 定理描述为:\(等价类数量=\…
Burnside's lemma 引例 题目描述 一个由2*2方格组成的正方形,每个格子上可以涂色或不涂色, 问共有多少种本质不同的涂色方案. (若两种方案可通过旋转互相得到,称作本质相同的方案) 解法 每个格子可以涂色,可以不涂色,共有16种方案.将16种方案编号. 把本质相同的方案合并: 方案1:{1},方案2:{2}, 方案3:{3,4,5,6},方案4:{7,8,9,10}, 方案5:{11,12},方案6:{13,14,15,16}, 共6种方案. 旋转可以看作是置换,所有置换组成置换…
Problem 起源: SGU 294 He's Circle 遗憾的是,被吃了. Poj有道类似的: Mission 一个长度为n(1≤n≤24)的环由0,1,2组成,求有多少本质不同的环. 实际上,如果使用高精度,那么n可以到1e6级别 群 定义 一个集合G,以及一个二元运算∗. 并且满足: 封闭性 如果a∈G,b∈G,那么a∗b∈G 结合律 如果a∈G,b∈G,c∈G,那么a∗b∗c=a∗(b∗c) 存在单位元 存在c∈G,使得b∗c=c∗b=c 那么c就称为G的单位元. 类似于加法运算中…
描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1004 共n个卡片,染成r,b,g三种颜色,每种颜色的个数有规定.给出一些置换,可以由置换得到的染色方案视为等价的,求等价类计数. 分析 给出置换求等价类计数,用Burnside引理:等价类计数=(每一个置换不动点的和)/置换数.(不知道的建议去看白书) 其中不动点是指一个染色方案经过置换以后染色与之前完全相同. 1.求不动点个数. 不动点的话同一个循环内的每一个点的颜色必须相同(否则不同颜色…
参考:刘汝佳<算法竞赛入门经典训练指南> 感觉是非常远古的东西了,几乎从来没有看到过需要用这个的题,还是学一发以防翻车. 置换:排列的一一映射.置换乘法相当于函数复合.满足结合律,不满足交换律. 置换的循环分解:即将置换看成一张有向图,分解成若干循环.循环的数量称为循环节. 以置换集合来描述等价关系.如果存在一个置换将一个方案映射到另一个方案,则这两个方案等价.置换集合应当构成置换群. 不动点:方案s经过置换f不变,则s为f的不动点. Burnside引理:等价类数量=所有置换的不动点数量的平…
burnside引理&polya定理 参考资料: <polya计数法的应用>--陈瑜希 黄学长 置换: 置换即是将n个元素的染色进行交换,产生一个新的染色方案. 群: 一个元素的集合G与一个二元运算(*)构成一个群.群满足以下性质: 封闭性:\(\forall a,b \in G,\exists c\in G ,c=a*b\) 结合律:\(\forall a,b,c,(a*b)*c=a*(b*c)\) 单位元:\(\exists e\in G,\forall a,a*e=e*a=a\)…
也许更好的阅读体验 \(Burnside引理\) 公式 \(\begin{aligned}L=\frac{1}{|G|}\sum_{i=1}^{|G|}D_{G_i}\end{aligned}\) 一些定义 \(E_i\) 表示与\(i\)同类的方案 \(Z_i\) 表示使\(i\)不变的置换 \(G\) 表示所有的置换方法 \(D_i\) 表示第\(i\)种置换能使多少方案不变 \(n\) 表示方案总数 \(L\) 表示本质不同的方案数 引理的引理 \(|E_i|*|Z_i|=|G|\) \(…
提示: 本文并非严谨的数学分析,有很多地方是自己瞎口胡的,仅供参考.有错误请不吝指出 :p 1. 群 1.1 群的概念 群 \((S,\circ)\) 是一个元素集合 \(S\) 和一种二元运算 $ \circ $ 的合称,其满足以下性质. 封闭性 对于 \(\forall a,b \in S\) , \(\exist c \in S\) 使得 \(c = a \circ b\) 结合律 对于 \(\forall a,b,c \in S\) , \(a \circ (b \circ c) = (…
Different Circle Permutation Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total Submission(s): 208    Accepted Submission(s): 101 Problem Description You may not know this but it's a fact that Xinghai Square is…
题目大意:3种颜色,每种染si个,有m个置换,求所有本质不同的染色方案数. 置换群的burnside引理,还有个Pólya过几天再看看... burnside引理:有m个置换k种颜色,所有本质不同的染色方案数就是每种置换的不变元素的个数的平均数. 求每种置换的不变元素的个数用背包解决.因为置换之后元素不变,所以对于每个循环节我们要染一个颜色,于是先处理出循环节作为背包中的“物体”,然后一个三维背包解决.f[i][j][k]的i j k表示三种颜色分别还可以染多少次. 除m%p用费马小定理就行了,…
听大佬们说了这么久Pólya定理,终于有时间把这个定理学习一下了. 置换(permutation)简单来说就是一个(全)排列,比如 \(1,2,3,4\) 的一个置换为 \(3,1,2,4\).一般地,我们记 \(i\) 到 \(a_i(1<=i<=n)\) 的一个置换为 \[ \left ( \begin{matrix} 1 & 2 & \cdots & n \\ a_1 & a_2 & \cdots & a_n \end{matrix} \r…
Magic Bracelet Time Limit: 2000MS   Memory Limit: 131072K Total Submissions: 3731   Accepted: 1227 Description Ginny’s birthday is coming soon. Harry Potter is preparing a birthday present for his new girlfriend. The present is a magic bracelet which…
题目链接:BZOJ - 1004 题目分析 首先,几个定义和定理引理: 群:G是一个集合,*是定义在这个集合上的一个运算. 如果满足以下性质,那么(G, *)是一个群. 1)封闭性,对于任意 a, b 属于 G, a * b 属于 G 2)结合律, a * b * c = a * (b * c) 3)单位元,在 G 中存在一个单位元 e ,使得对于 G 中任意的 a , a * e = e * a = a 4)逆元, 对于 G 中任意的 a ,在 G 中存在 b , 使得 a * b = e ,…
标题效果:特定n张卡m换人,编号寻求等价类 数据保证这m换人加上置换群置换后本身构成 BZOJ坑爹0.0 条件不那么重要出来尼玛怎么做 Burnside引理--昨晚为了做这题硬啃了一晚上白书0.0 都快啃吐了0.0 Burnside引理:一个置换群下的等价类个数等于全部置换的不动点个数的平均值 没有接触过群论的建议去啃白书-- 网上的东西看不懂的 最后那个除法要用乘法逆元 我懒得写EXGCD写了费马小定理0.0 #include<cstdio> #include<cstring>…
置换群.Burnside引理与等价类计数问题 标签: 置换群 Burnside引理 置换 说说我对置换的理解,其实就是把一个排列变成另外一个排列.简单来说就是一一映射.而置换群就是置换的集合. 比如\[ \left(\begin{array}1 1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 4 & 2 & 1 \end{array}\right) \]是一个置换.也可以把置换看做定义域和值域都为{1,2,......,n}的函数,…
[BZOJ3202]项链(莫比乌斯反演,Burnside引理) 题面 BZOJ 洛谷 题解 首先读完题目,很明显的感觉就是,分成了两个部分计算. 首先计算本质不同的珠子个数,再计算本质不同的项链个数. 前面一个部分和\(gcd\)相关,一种莫比乌斯反演的感觉. 后面一个部分出现了旋转操作,要求本质不同的方案数,不难想到Burnside引理. 首先先考虑怎么求本质不同的珠子个数. 我们直接考虑无序的三元组\((x,y,z)\),满足\(x,y,z\le a,gcd(x,y,z)=1\) 容斥考虑最…
零.约定: (置换等名词会在前置知识中有解释) \(1.\)在本文中,题目要求的染色方案等统称为"元素". \(2.\)两个元素严格相等我们记做"\(=\)",两个元素等价(按题目所给的置换可以互相得到)我们记做"\(\Leftrightarrow\)". \(3.\)元素\(a\)进行置换\(g\)我们记做\(a\otimes g\). \(4.\)置换之间的乘积记做\(\odot\),\(g_i=g_j\odot g_k\),当且仅当\(\f…
转载自:https://blog.csdn.net/whereisherofrom/article/details/79631703 Burnside引理 笔者第一次看到Burnside引理那个公式的时候一头雾水,找了本组合数学的书一看,全是概念.后来慢慢从Polya定理开始,做了一些题总算理解了.本文将从最简单的例子出发,解释Burnside引理和Polya定理.然后提供一些自己做过的和上述定理相关的题目和解题报告. Burnside引理是为了解决m种颜色给n个对象染色的计数问题. [例题1]…