[BZOJ2721]樱花(数论) 题面 BZOJ 题解 先化简一下式子,得到:\(\displaystyle n!(x+y)=xy\),不难从这个式子中得到\(x,y\gt n!\). 然后通过\(x\)来表示\(y\),得到\(\displaystyle y=\frac{n!x}{x-n!}\).令\(x=n!+p\),得到\(\displaystyle y=\frac{n!(n!+p)}{p}=\frac{(n!)^2}{p}+n!\). 因为\(x,y\)都是整数,得到\(p|(n!)^2…