bzoj2721 [Violet5]樱花】的更多相关文章

bzoj2721 [Violet 5]樱花 给出 \(n\) 求 \(\frac{1}{x}+\frac{1}{y}=\frac{1}{n!}\) 的正整数解数量 \(\bmod (10^9+7)\) \(n\leq10^6\) 数论 先化式子 \(\frac{1}{x}+\frac{1}{y}=\frac{1}{n!}\) \(\frac{xy}{x+y}=n!\) \(xy=n!(x+y)\) \(xy-n!x-n!y+n!^2=n!^2\) \((x-n!)(y-n!)=n!^2\) 令…
有(x+y)n!=xy.套路地提出x和y的gcd,设为d,令ad=x,bd=y.则有(a+b)n!=abd.此时d已是和a.b无关的量.由a与b互质,得a+b与ab互质,于是将a+b除过来得n!=abd/(a+b).d/(a+b)可取的值不受a.b限制,那么只要满足ab|n!(a⊥b)就可以了. 将n!分解质因数,答案就很容易统计了.枚举质数数一下在n!中有几个即可. #include<iostream> #include<cstdio> #include<cmath>…
[BZOJ2721]樱花(数论) 题面 BZOJ 题解 先化简一下式子,得到:\(\displaystyle n!(x+y)=xy\),不难从这个式子中得到\(x,y\gt n!\). 然后通过\(x\)来表示\(y\),得到\(\displaystyle y=\frac{n!x}{x-n!}\).令\(x=n!+p\),得到\(\displaystyle y=\frac{n!(n!+p)}{p}=\frac{(n!)^2}{p}+n!\). 因为\(x,y\)都是整数,得到\(p|(n!)^2…
2721: [Violet 5]樱花 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 499  Solved: 293[Submit][Status][Discuss] Description Input Output Sample Input  3 Sample Output  9 HINT Source interviewstreet--EQUATIONS Solution 巧妙! $\frac{1}{x}+\frac{1}{y}=\frac{1…
题面 题解 首先化一下式子 $$ \frac 1x+\frac 1y=\frac 1{n!} \Rightarrow \frac {x+y}{xy}=\frac 1{n!} \Rightarrow (x+y)n!=xy \\ \Rightarrow(n!-x)+(n!-y)=(n!)^2 $$ 看到最后一个式子,由于$n!$是唯一确定的,所以只要确定了$x$,$y$也是确定的,而且是唯一确定的一组$(x,y)$. 根据唯一分解定理,$n!=p_1^{k_1}p_2^{k_2}...p_m^{k_…
[BZOJ2721][Violet 5]樱花 Description Input Output Sample Input 2 Sample Output 3 HINT 题解:,所以就是求(n!)2的约数个数 又有一个结论,若n=Πpi^ei,那么n的约数个数就是Π(ei+1),所以我们只需要筛出1-n 的所有素数,再分别计算每个素数的贡献就行了. #include <cstdio> #include <cstring> #include <iostream> #defi…
P1445 [Violet]樱花 显然$x,y>n$ 那么我们可以设$a=n!,y=a+t(t>0)$ 再对原式通分一下$a(a+t)+ax=x(a+t)$ $a^{2}+at+ax=ax+tx$ $x=a^{2}/t+a$ $x=(n!)^{2}/t+n!$ 再根据唯一分解定理 $(n!)^{2}=q_{1}^{p_{1}}*q_{2}^{p_{2}}*q_{3}^{p_{3}}*......*q_{m}^{p_{m}}$ 将$(n!)^{2}$分解质因数一下 最后乘法原理套上去 end.…
题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=2721 好久没做数学题了,感觉有些思想僵化,走火入魔了. 这道题就是求方程$ \frac{1}{x}+\frac{1}{y}=\frac{1}{n!} $的正整数解个数. 首先我们可以把方程化为$ (x+y)n!=xy $...然后就发现搞不出什么了. 但是我们可以考虑换元,因为显然$ x,y>n $,所以我们设$ y=n!+k $,然后我们就可以把方程化为$ (x+n!+k)n!=x…
题目背景 我很愤怒 题目描述 求方程 $\frac{1}{x}+\frac{1}{y}=\frac{1}{N!}$ 的正整数解的组数,其中$N≤10^6$. 解的组数,应模$1e9+7$. 输入输出格式 输入格式: 输入一个整数N 输出格式: 输出答案 输入输出样例 输入样例#1: 复制 1439 输出样例#1: 复制 102426508 题解 看到原题面的我也很愤怒. 显然是道数论题,所以我们要去分析它的性质. $\frac{1}{x}+\frac{1}{y}=\frac{1}{n!}$ $\…
http://www.cnblogs.com/rausen/p/4138233.html #include<cstdio> #include<iostream> using namespace std; #define MOD 1000000007 int n; bool Not[1000001]; int pr[1000001],e,ci[1000001]; void shai() { Not[1]=1; for(int i=2;i<=1000;++i) if(!Not[i…