向下兼容特性是软件开发系统的一个重要指标,它是指一个新的系统或者软件能够与旧的系统或软件兼容并正常运行.这意味着旧系统或软件可以在新系统或软件中使用,而不会出现问题.向下兼容对于提高软件或系统的可用性非常重要,因为它允许用户在不更换旧系统或软件的情况下使用新系统或软件. 我们知道MacOS系统从Monterey12.3版本起就移除了系统内置的Python2,更不消说最新的Ventura13.1了,但有时候我们依然需要古早版本的Python2.x来维护或者更新一些"祖传项目",不得不承认…
目录 全文快读 0 abstract 1 intro 2 related work 3 背景 & 假设 3.1 RL & KWIK(know what it knows)的背景 3.2 问题定义 4 Multi-Fidelity Bandit Optimization 4.1 MF 寻找最优 arm 的算法(MF-bandit) 4.2 一个例子 4.3 理论证明 5 Multi-Fidelity RL 5.1 MFRL algorithm 5.2 一个例子 5.3 理论证明 6 实验:R…
SRILM是一个建立和使用统计语言模型的开源工具包,从1995年开始由SRI 口语技术与研究实验室(SRI Speech Technology and Research Laboratory)开发,现在仍然不断推出新版本,被广泛应用于语音识别.机器翻译等领域.这个工具包包含一组C++类库.一组进行语言模型训练和应用的可执行程序等.利用它可以非常方便地训练和应用语言模型.给定一组连续的词,调用SRILM提供的接口,可以得到这组词出现的概率. http://www.jianshu.com/p/5b1…
写在前面 本文为资料整合,没有原创内容,方便自己查找和学习, 花费了一晚上把sd安装好,又花了大半天了解sd周边的知识,终于体会到为啥这些生成式AI被称为魔法了,魔法使用前要吟唱类比到AI上不就是那些关键词参数什么的吗,描述的越具体生成的东西越具体.可以想象现在还需要手动输入词语的魔法,结合语音识别即可实现真吟唱效果,再结合脑机接口达成无需吟唱的效果...所思即所得,那时候才真正拼才华和想象力. 对普通人来说,AI几乎就是魔法.未来可期! 安装(签订契约) Home · AUTOMATIC111…
动机 基于 Transformers 架构的大型语言模型 (LLM),如 GPT.T5 和 BERT,已经在各种自然语言处理 (NLP) 任务中取得了最先进的结果.此外,还开始涉足其他领域,例如计算机视觉 (CV) (VIT.Stable Diffusion.LayoutLM) 和音频 (Whisper.XLS-R).传统的范式是对通用网络规模数据进行大规模预训练,然后对下游任务进行微调.与使用开箱即用的预训练 LLM (例如,零样本推理) 相比,在下游数据集上微调这些预训练 LLM 会带来巨大…
我们很高兴正式发布 trl 与 peft 的集成,使任何人都可以更轻松地使用强化学习进行大型语言模型 (LLM) 微调!在这篇文章中,我们解释了为什么这是现有微调方法的有竞争力的替代方案. 请注意, peft 是一种通用工具,可以应用于许多 ML 用例,但它对 RLHF 特别有趣,因为这种方法特别需要内存! 如果你想直接深入研究代码,请直接在 TRL 的文档页面 直接查看示例脚本. 介绍 LLMs & RLHF LLM 结合 RLHF (人类反馈强化学习) 似乎是构建非常强大的 AI 系统 (例…
上一章我们介绍了不同的指令微调方案, 这一章我们介绍如何降低指令数据集的人工标注成本!这样每个人都可以构建自己的专属指令集, 哈哈当然我也在造数据集进行时~ 介绍两种方案SELF Instruct和Automatic Prompt Engineer,前者是基于多样的种子指令,利用大模型的上下文和指令理解能力,以及生成的多样性来Bootstrap生成更多样的指令样本,后者是prompt逆向工程,基于输入和输出,使用LLM来生成和挑选最优的prompt指令. 于是我把这两个方法强行组了CP,用APE…
在本文中,我们将展示如何使用 大语言模型低秩适配 (Low-Rank Adaptation of Large Language Models,LoRA) 技术在单 GPU 上微调 110 亿参数的 FLAN-T5 XXL 模型.在此过程中,我们会使用到 Hugging Face 的 Transformers.Accelerate 和 PEFT 库. 通过本文,你会学到: 如何搭建开发环境 如何加载并准备数据集 如何使用 LoRA 和 bnb (即 bitsandbytes) int-8 微调 T…
讲在前面,chatgpt出来的时候就想过将其利用在信息抽取方面,后续也发现了不少基于这种大语言模型的信息抽取的论文,比如之前收集过的: https://github.com/cocacola-lab/GPT4IE https://github.com/RidongHan/Evaluation-of-ChatGPT-on-Information-Extraction https://github.com/cocacola-lab/ChatIE Unified Text Structuralizat…
上一章介绍了如何基于APE+SELF自动化构建指令微调样本.这一章咱就把微调跑起来,主要介绍以Lora为首的低参数微调原理,环境配置,微调代码,以及大模型训练中显存和耗时优化的相关技术细节 标题这样写是因为上周突然收到了一周内上线一版chatbo的命令,原因无它领导们都刷到了<一个小时你也可以拥有ChatGPT>,<100美金训练ChatGPT>,<仅训练3小时超越ChatGPT>,<人人都可以拥有ChatGPT>...领导说人人都有了为啥我没有呀?!!真诚…