论文原址:https://arxiv.org/pdf/1904.02701.pdf github:https://github.com/OceanPang/Libra_R-CNN 摘要 相比模型的结构,关注度较少的训练过程对于检测器的成功检测也是十分重要的.本文发现,检测性能主要受限于训练时,sample level,feature level,objective level的不平衡问题.为此,提出了Libra R-CNN,用于对目标检测中平衡学习的简单有效的框架.主要包含三个创新点:(1)Io…
Introduction (1)IVPR问题: 根据一张图片从视频中识别出行人的方法称为 image to video person re-id(IVPR) 应用: ① 通过嫌犯照片,从视频中识别出嫌犯: ② 通过照片,寻找走失人口. (2)图片-视频行人匹配问题的描述: (3)IVPR的难点: ① 图像.视频的特征不同:视频包含视觉外貌特征(visual appearance features)和时空特征(spatial-temporal features),而图片只包含视觉外貌特征: ② I…
一.论文提出的方法: 使用进入ICU前48h的用药特征作为预测因子预测重症监护患者的死亡率和ICU住院时间. 用到了联邦学习,自编码器,k-means聚类算法,社区检测. 数据集:从50家患者人数超过600人的医院,每个医院抽取560名患者形成最终的28000例数据集,20000作为训练集,8000作为测试集. 二.具体实现: 1.每个医院各自训练自编码器重构药物特征 2. 每个医院用将各自data转换为向量表示,然后将所有医院的平均值返回给server 3. Server使用k-means算法…
6 dyngraph2vec: Capturing Network Dynamics using Dynamic Graph Representation Learning207 link:https://scholar.google.com.hk/scholar_url?url=https://arxiv.org/pdf/1809.02657&hl=zh-TW&sa=X&ei=bSGfYviOJOOEywThnbSYCQ&scisig=AAGBfm0bzwUuDvjnCX…
A Convex Optimization Framework for Active Learning Active learning is the problem of progressively selecting and annotating the most informative unlabeled samples, in order to obtain a high classification performance. 目前AL方法存在的问题有: 1.大部分AL算法在预训练分类器之…
作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ 更多论文阅读笔记 http://blog.csdn.net/colorant/article/details/8256145 == 目标问题 == 为了提高资源的利用率以及满足不同应用的需求,在同一集群内会部署各种不同的分布式运算框架(cluster computing framework),他们有着各自的调度逻辑. Mesos…
白翔的CRNN论文阅读 1.  论文题目 Xiang Bai--[PAMI2017]An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition 2.  论文思路和方法 1)  问题范围: 单词识别 2)  CNN层:使用标准CNN提取图像特征,利用Map-to-Sequence表示成特征向量: 3)  RNN层:使…
前两天,我和大家谈了如何阅读教材和备战数模比赛应该积累的内容,本文进入到数学建模七日谈第三天:怎样进行论文阅读. 大家也许看过大量的数学模型的书籍,学过很多相关的课程,但是若没有真刀真枪地看过论文,进行过模拟比赛,恐怕还是会捉襟见肘,不能够游刃有余地应对真正比赛中可能会遇到的一些困难.笔者就自己的经验稍稍给大家谈谈,在看了很多数学模型的书籍之后,如何通过论文阅读,将我们的水平上升一个新的台阶,达到一个质的飞跃! 首先,大家要搞清楚教材和论文的区别.教材的主要目的是介绍方法,前人总结出来的最经典的…
作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ 更多论文阅读笔记 http://blog.csdn.net/colorant/article/details/8256145 == 目标问题 == 下一代的Hadoop框架,支持10,000+节点规模的Hadoop集群,支持更灵活的编程模型 == 核心思想 == 固定的编程模型,单点的资源调度和任务管理方式,使得Hadoop 1…
本文来自李纪为博士的论文 Deep Reinforcement Learning for Dialogue Generation. 1,概述 当前在闲聊机器人中的主要技术框架都是seq2seq模型.但传统的seq2seq存在很多问题.本文就提出了两个问题: 1)传统的seq2seq模型倾向于生成安全,普适的回答,例如“I don’t know what you are talking about”.为了解决这个问题,作者在更早的一篇文章中提出了用互信息作为模型的目标函数.具体见A Diversi…