对于显存不充足的炼丹研究者来说,弄清楚Pytorch显存的分配机制是很有必要的.下面直接通过实验来推出Pytorch显存的分配过程. 实验实验代码如下: import torch from torch import cuda x = torch.zeros([3,1024,1024,256],requires_grad=True,device='cuda') print("1", cuda.memory_allocated()/1024**2) y = 5 * x print(&quo…
刚入门深度学习时,没有显存的概念,后来在实验中才渐渐建立了这个意识. 下面这篇文章很好的对GPU和显存总结了一番,于是我转载了过来. 作者:陈云 链接:https://zhuanlan.zhihu.com/p/31558973 来源:知乎 深度学习最吃机器,耗资源,在本文,我将来科普一下在深度学习中: 何为"资源" 不同操作都耗费什么资源 如何充分的利用有限的资源 如何合理选择显卡 并纠正几个误区: 显存和GPU等价,使用GPU主要看显存的使用? Batch Size 越大,程序越快…
ref:https://www.cnblogs.com/MiWhite/p/6228491.html 学习笔记 UpdateXml() MYSQL显错注入 在学习之前,需要先了解 UpdateXml() . UPDATEXML (XML_document, XPath_string, new_value); 第一个参数:XML_document是String格式,为XML文档对象的名称,文中为Doc 第二个参数:XPath_string (Xpath格式的字符串) ,如果不了解Xpath语法,可…
一起来学matlab-matlab学习笔记7-定时器 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考书籍 <matlab 程序设计与综合应用>张德丰等著 感谢张老师的书籍,让我领略到matlab的便捷 注意:定时器不是指 计时器 使用MATLAB定时器的步骤如下: (1)创建定时器对象. (2)设置定时器,包括定时器的触发事件与其他属性. (3)启动定时器对象. (4)删除定时器对象. 设计简单的定时器 定时器创建 读取和设置定时器属性 定时器对象有很多属性,这些属性反映了定时器…
如果神经元的输出是输入的线性函数,而线性函数之间的嵌套任然会得到线性函数.如果不加非线性函数处理,那么最终得到的仍然是线性函数.所以需要在神经网络中引入非线性激活函数. 常见的非线性激活函数主要包括Sigmoid函数.tanh函数.ReLU函数.Leaky ReLU函数,这几种非线性激活函数的介绍在神经网络中重要的概念(超参数.激活函数.损失函数.学习率等)中有详细说明 ReLU函数处理自然语言效果更佳,Sigmoid函数处理图像效果更佳 (一)ReLU import torch from to…
PyTorch 的诞生 2017 年 1 月,FAIR(Facebook AI Research)发布了 PyTorch.PyTorch 是在 Torch 基础上用 python 语言重新打造的一款深度学习框架.Torch 是采用 Lua 语言为接口的机器学习框架,但是因为 Lua 语言较为小众,导致 Torch 学习成本高,因此知名度不高. PyTorch 的发展 2017 年 1 月正式发布 PyTorch. 2018 年 4 月更新 0.4.0 版,支持 Windows 系统,caffe2…
本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson3/module_containers.py 这篇文章来看下 PyTorch 中网络模型的创建步骤.网络模型的内容如下,包括模型创建和权值初始化,这些内容都在nn.Module中有实现. 网络模型的创建步骤 创建模型有 2 个要素:构建子模块和拼接子模块.如 LeNet 里包含很多卷积层.池化层.全连接层,当我们构建好所有的子模块之后,按照一定的顺序拼接起来…
本章代码: https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson4/optimizer_methods.py https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson4/momentum.py 这篇文章主要介绍了 PyTorch 中的优化器,包括 3 个部分:优化器的概念.optimizer 的属性.optimizer 的方法. 优化器的概念 P…
本章代码: https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson6/bn_and_initialize.py https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson6/bn_in_123_dim.py https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson6/norma…
一.继承nn.Module类并自定义层 我们要利用pytorch提供的很多便利的方法,则需要将很多自定义操作封装成nn.Module类. 首先,简单实现一个Mylinear类: from torch import nn # Mylinear继承Module class Mylinear(nn.Module): # 传入输入维度和输出维度 def __init__(self,in_d,out_d): # 调用父类构造函数 super(Mylinear,self).__init__() # 使用Pa…