Java生鲜电商平台-商城后台架构与原型图实战 说明:生鲜电商平台的运营平台,其中需要很多的功能进行管理.目前把架构与原型图实战分享给大家,希望对大家有用. 仪表盘/首页,简单统计,报表页,运营快捷口.实际统计情况:订单(订单量,各订单状态),销售额,广告统计,活动统计,用户统计(促活,拉新),商品管理/统计/添加,爆品统计,系统公告等   仪表盘统计一   仪表盘统计二 1.商品上传 商品上传:商品基本信息,图片,标签,库存,审核状态(思考是否需要审核)     商品上架,审核思考点:上传时商…
借助Keras和Opencv实现的神经网络中间层特征图的可视化功能,方便我们研究CNN这个黑盒子里到发生了什么. 自定义网络特征可视化 代码: # coding: utf-8 from keras.models import Model import cv2 import matplotlib.pyplot as plt from keras.models import Sequential from keras.layers.convolutional import Convolution2D…
highchart 动态生成x轴和折线图 <!DOCTYPE HTML> <html> <head> <meta charset="utf-8"><link rel="icon" href="https://static.jianshukeji.com/highcharts/images/favicon.ico"> <meta name="viewport" c…
训练好的模型,想要输入中间层的特征图,有两种方式: 1. 通过model.get_layer的方式.创建新的模型,输出为你要的层的名字. 创建模型,debug状态可以看到模型中,base_model/layers,图中红框即为layer名字,根据你想输出的层填写.最后网络feed数据后,输出的就是中间层结果. 2. 通过建立Keras的函数. from keras import backend as K from keras.models import load_model from matpl…
转载自:https://www.jianshu.com/p/bf8749e15566 今天介绍卷积网络中一个很重要的概念,通道(Channel),也有叫特征图(feature map)的. 首先,之前的文章也提到过了,卷积网络中主要有两个操作,一个是卷积(Convolution),一个是池化(Pooling). 其中池化层并不会对通道之间的交互有影响,只是在各个通道中进行操作. 而卷积层则可以在通道与通道之间进行交互,之后在下一层生成新的通道,其中最显著的就是Incept-Net里大量用到的1x…
特征图(或者叫地标图,landmark maps)利用参数化特征(如点和线)的全局位置来表示环境.如图1所示,机器人的外部环境被一些列参数化的特征,即二维坐标点表示.这些静态的地标点被观测器(装有传感器的机器人)利用多目标跟踪的方法跟踪,从而估计机器人的运动. Fig.1 Feature maps. 机器人的定位是通过建立传感器观测特征和图map中特征之间的关系来确定的.预测特征的位置和量测特征位置之间的差别被用来计算机器人的位姿.这种方式,类似于多目标跟踪问题,但是不想传统的多目标跟踪问题,这…
1.加载VGG19获取图片特征图 # coding = utf-8 import tensorflow as tf import numpy as np import matplotlib.pyplot as plt import os import scipy.io import scipy.misc def _conv_layer(input,weights,bias): conv = tf.nn.conv2d(input,tf.constant(weights),strides=(1,1,…
根据tensorflow中的conv2d函数,我们先定义几个基本符号 1.输入矩阵 W×W,这里只考虑输入宽高相等的情况,如果不相等,推导方法一样,不多解释. 2.filter矩阵 F×F,卷积核 3.stride值 S,步长 4.输出的特征图高宽为 new_height.new_width 当然还有其他的一些具体的参数,这里就不再说明了. 我们知道,padding的方式在tensorflow里分两种,一种是VALID,一种是SAME,下面分别介绍这两种方式的实际操作方法. 1.如果paddin…
为了减少神经网络的计算消耗,论文提出Ghost模块来构建高效的网络结果.该模块将原始的卷积层分成两部分,先使用更少的卷积核来生成少量内在特征图,然后通过简单的线性变化操作来进一步高效地生成ghost特征图.从实验来看,对比其它模型,GhostNet的压缩效果最好,且准确率保持也很不错,论文思想十分值得参考与学习   来源:晓飞的算法工程笔记 公众号 论文: GhostNet: More Features from Cheap Operations 论文地址:https://arxiv.org/a…
向下\向上取整 在编辑卷积网络输出特征高宽公式时,需用到向下取整,Mark一下. 向下取整 \(\lfloor x \rfloor\) $\lfloor x \rfloor$ 向上取整 \(\lceil x \rceil\) $\lceil x \rceil$ 特征图高宽公式 \(已知输入的高宽为(h_x,w_x).卷积核的高宽为(h_k,w_k).高度和宽度方向的步幅为(s_h,s_w),那么输出的高宽为:\) \[(\lfloor \frac{h_x - h_k +p_h}{s_h} +1…