P2365 任务安排 batch 动态规划】的更多相关文章

batch ★☆   输入文件:batch.in   输出文件:batch.out   简单对比时间限制:1 s   内存限制:128 MB 题目描述 N个任务排成一个序列在一台机器上等待完成(顺序不得改变),这N个任务被分成若干批,每批包含相邻的若干任务.从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时间是Ti.在每批任务开始前,机器需要启动时间S,而完成这批任务所需的时间是各个任务需要时间的总和(同一批任务将在同一时刻完成).每个任务的费用是它的完成时刻乘以一个费用系数Fi.请确…
P2365 任务安排 batch:$n<=10000$ 斜率优化入门题 $n^{3}$的dp轻松写出 但是枚举这个分成多少段很不方便 我们利用费用提前的思想,提前把这个烦人的$S$在后面的贡献先算掉 设$sv[i],st[i]$为费用.时间的前缀和 于是我们就可以得出一个$n^{2}$的方程 $f[i]=f[j]+(sv[i]-sv[j])*st[i]+(sv[n]-sv[j])*S$ 拆开:$f[i]=f[j]+sv[i]*st[i]-sv[j]*st[i]+sv[n]*S-sv[j]*S$…
P2365 任务安排 题目描述 N个任务排成一个序列在一台机器上等待完成(顺序不得改变),这N个任务被分成若干批,每批包含相邻的若干任务.从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时间是Ti.在每批任务开始前,机器需要启动时间S,而完成这批任务所需的时间是各个任务需要时间的总和(同一批任务将在同一时刻完成).每个任务的费用是它的完成时刻乘以一个费用系数Fi.请确定一个分组方案,使得总费用最小. 例如:S=1:T={1,3,4,2,1}:F={3,2,3,3,4}.如果分组方案是{…
洛谷传送门 FJOI 日常原题 $2333$(似乎还不如 SDOI2012 任务安排 $2333$) 显然考虑 $dp$,这个是经典的把未来的代价先计算的 $dp$,然后才是斜率优化 一开始想状态时一直有一个时间维,然后就没法优化,考虑如何消掉这个时间维 可以发现,时间只和当前处理到的任务编号,和之前启动机器的次数(分的段数)有关 然后就可以设 $f[i][j]$ 表示前 $i$ 个任务,分了 $j$ 段,然后就可以 $O(n^3)$ $dp$ 了(然鹅此时并不能斜率优化...) 考虑怎么优化,…
洛谷题目链接:任务安排 题目描述 N个任务排成一个序列在一台机器上等待完成(顺序不得改变),这N个任务被分成若干批,每批包含相邻的若干任务.从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时间是Ti.在每批任务开始前,机器需要启动时间S,而完成这批任务所需的时间是各个任务需要时间的总和(同一批任务将在同一时刻完成).每个任务的费用是它的完成时刻乘以一个费用系数Fi.请确定一个分组方案,使得总费用最小. 例如:S=1:T={1,3,4,2,1}:F={3,2,3,3,4}.如果分组方案是…
题目描述 N个任务排成一个序列在一台机器上等待完成(顺序不得改变),这N个任务被分成若干批,每批包含相邻的若干任务.从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时间是Ti.在每批任务开始前,机器需要启动时间S,而完成这批任务所需的时间是各个任务需要时间的总和(同一批任务将在同一时刻完成).每个任务的费用是它的完成时刻乘以一个费用系数Fi.请确定一个分组方案,使得总费用最小. 例如:S=1:T={1,3,4,2,1}:F={3,2,3,3,4}.如果分组方案是{1,2}.{3}.{4…
嘟嘟嘟 如果常规dp,\(dp[i][j]\)表示前\(i\)个任务分\(j\)组,得到 \[dp[i][j] = min _ {k = 0} ^ {i - 1} (dp[k][j - 1] + (s * j + sumt[i]) * (sumc[i] - sumc[k]))\] 复杂度是\(O(n ^ 3)\)的. 因此我们要换一个思路. 在执行一批任务时,我们虽然不知道之前机器启动过多少次,但是可以确定机器因执行这批人武而花费的启动时间为\(s\),会累加到后面的任务上. 因此,令\(dp[…
解法一:http://www.cnblogs.com/SilverNebula/p/5926253.html 解法二:斜率优化 在解法一中有这样的方程:dp[i]=min(dp[i],dp[j]+(sumf[i]-sumf[j])*sumt[i]+s*(sumf[n]-sumf[j]) ) 其中min的后半部分,也就是dp[j]+(sumf[i]-sumf[j])*sumt[i]+s*(sumf[n]-sumf[j]) 计算了将j~i分为一组的花费(以及提前计算的受影响花费) 设f(j)=dp[…
题目描述 N个任务排成一个序列在一台机器上等待完成(顺序不得改变),这N个任务被分成若干批,每批包含相邻的若干任务.从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时间是Ti.在每批任务开始前,机器需要启动时间S,而完成这批任务所需的时间是各个任务需要时间的总和(同一批任务将在同一时刻完成).每个任务的费用是它的完成时刻乘以一个费用系数Fi.请确定一个分组方案,使得总费用最小. 例如:S=1:T={1,3,4,2,1}:F={3,2,3,3,4}.如果分组方案是{1,2}.{3}.{4…
其实是可以斜率优化的但是没啥必要 设st为花费时间的前缀和,sf为Fi的前缀和,f[i]为分组到i的最小花费 然后枚举j转移,考虑每次转移都是把j到i分为一组这样意味着j及之后的都要增加s的时间,同时增加这段的结束时间/*F,取min即可 #include<iostream> #include<cstdio> using namespace std; const int N=5005,inf=1e9; int n,s,st[N],sf[N],f[N]; int read() { i…