洛谷P3299 保护出题人】的更多相关文章

注意每一关的时候,前一关的植物会消失.保留整数指四舍五入. 解:冷静分析一波,列一个式子出来,发现每一关的植物攻击力要是(ai + ... + aj) / (xi + d * (i - j))的最大值.1 <= j <= i 然后把这个东西写成前缀和,分母的i和j分离:(si - sj-1) / (xi + d * i - d * j)) 发现就是两个点(xi + d * i, si)和(d * j, sj-1)之间的斜率. 于是维护一个下凸包然后凸包上三分就行了.注意到插入的点的横坐标单增,…
P3299 [SDOI2013]保护出题人 题目描述 出题人铭铭认为给SDOI2012出题太可怕了,因为总要被骂,于是他又给SDOI2013出题了. 参加SDOI2012的小朋友们释放出大量的僵尸,企图攻击铭铭的家.而你作为SDOI2013的参赛者,你需要保护出题人铭铭. 僵尸从唯一一条笔直道路接近,你们需要在铭铭的房门前放置植物攻击僵尸,避免僵尸碰到房子. 第一关,一只血量为\(a_1\)点的墦尸从距离房子\(x_1\)米处速接近,你们放置了攻击力为\(y_1\)点/秒的植物进行防御:第二关,…
[BZOJ3203]保护出题人(动态规划,斜率优化) 题面 BZOJ 洛谷 题解 在最优情况下,肯定是存在某只僵尸在到达重点的那一瞬间将其打死 我们现在知道了每只僵尸到达终点的时间,因为僵尸要依次打死. 所以我们假设血量的前缀和是\(s_i\) 那么我么必须在它到达的时间\(t_i\)之前打出总共不少于\(s_i\)的伤害. 而植物的攻击力是固定的,意味着时间-伤害的坐标系上是一条直线. 那么现在相当于在时间-伤害的坐标系上有若干个点,每次询问与\((0,0)\)构成斜率最大的那一个. 但是现在…
[BZOJ3203][Sdoi2013]保护出题人 Description Input 第一行两个空格隔开的正整数n和d,分别表示关数和相邻僵尸间的距离.接下来n行每行两个空格隔开的正整数,第i + 1行为Ai和 Xi,分别表示相比上一关在僵尸队列排头增加血量为Ai 点的僵尸,排头僵尸从距离房子Xi米处开始接近. Output 一个数,n关植物攻击力的最小总和 ,保留到整数. Sample Input 5 2 3 3 1 1 10 8 4 8 2 3 Sample Output 7 HINT 第…
保护出题人(defend) 题目描述 输入 第一行两个空格隔开的正整数n和d,分别表示关数和相邻僵尸间的距离. 接下来n行每行两个空格隔开的正整数,第i + 1行为 a i和 x i,分别表示相比上一关 在僵尸队列排头增加血量为 a i点的僵尸,排头僵尸从距离房子 x i米处开始接近. 输出 一个数,n关植物攻击力的最小总和 ,保留到整数. 样例输入 5 2 3 3 1 1 10 8 4 8 2 3 样例输出 7 提示 来源 sdoi2013R2day2 solution 把ai前缀和起来 得到…
题目 出题人铭铭认为给SDOI2012出题太可怕了,因为总要被骂,于是他又给SDOI2013出题了. 参加SDOI2012的小朋友们释放出大量的僵尸,企图攻击铭铭的家.而你作为SDOI2013的参赛者,你需要保护出题人铭铭. 僵尸从唯一一条笔直道路接近,你们需要在铭铭的房门前放置植物攻击僵尸,避免僵尸碰到房子. 第一关,一只血量为\(a_1\)点的墦尸从距离房子\(x_1\)米处速接近,你们放置了攻击力为\(y_1\)点/秒的植物进行防御:第二关,在上一关基础上,僵尸队列排头增加一只血量为\(a…
[BZOJ3203] [SDOI2013]保护出题人(二分+凸包) 题面 题面较长,略 分析 对于第i关,我们算出能够打死前k个个僵尸的最小能力值,再取最大值就可以得到\(y_i\). 前j-1个僵尸到门的距离为\(x_i+(i-j+1) \times d\),血量为\(sum[i]-sum[j]\),因此 \[y_i=max(\frac{sum_i-sum_j}{x_i+(i-j+1) \times d})= max(\frac{sum_i-sum_j}{x_i+i \times d-(j+1…
题面 ​出题人铭铭认为给SDOI2012 出题太可怕了,因为总要被骂,于是他又给SDOI2013 出题了. 参加SDOI2012 的小朋友们释放出大量的僵尸,企图攻击铭铭的家.而你作为SDOI2013的参赛者,你需要保护出题人铭铭. 僵尸从唯一一条笔直道路接近,你们需要在铭铭的房门前放置植物攻击僵尸,避免僵尸碰到房子.第一关,一只血量为a1 点的僵尸从距离房子x1 米处匀速接近,你们放置了攻击力为y1 点/秒的植物进行防御:第二关,在上一关基础上,僵尸队列排头增加一只血量为a2点的僵尸,与后一只…
洛谷传送门 题目大意:太长略 每新加入一个僵尸,容易得到方程$ans[i]=max{\frac{sum_{i}-sum_{j-1}}{s_{i}+d(i-j)}}$ 即从头开始每一段僵尸都需要在规定距离内被消灭 展开式子,可得$ans[i]=max{\frac{sum_{i}-sum_{j-1}}{s_{i}+di-dj}}$ 是不是很像斜率的式子= = ----$(y2-y1)/(x2-x2)$ 维护一个下凸包,这次不是用直线去切凸包,而是把凸包上每个点都向一个定点去连直线,求最大的斜率 会发…
题目链接 易得第\(i\)关的最小攻击力为\(\max_{j=1}^i\frac{sum[i]-sum[j-1]}{x+d*(i-j)}\) 十分像一个斜率式,于是看作一个点\(P(x+d*i,sum[i])\)和点\(Q(d*j,sum[j-1])\)的斜率 于是就是求当前\(i\)的点\(P\)和之前的所有点\(Q\)的最大斜率,显然有最大斜率的点在凸包上而且有单峰. 于是用单调队列维护凸包,在凸包上三分斜率最大值. #include <cstdio> #include <algor…