[题目] 给定两个有序数组arr1和arr2,已知两个数组的长度分别为 m1 和 m2,求两个数组中的第 K 小数.要求时间复杂度O(log(m1 + m2)). [举例] 例如 arr1 = [1, 2,3],arr2 = [3,4,5,6],K = 4. 则第 K 小数为 3. 例如 arr1 = [0,1,2],arr2 = [3,4,5,7,8], K = 3; 则第 K 小数为 2. [难度] 难 解答 这道题和我上次讲的那一道题是非常非常类似的:递归打卡1:在两个长度相等的排序数组中…
问题:两个已经排好序的数组,找出两个数组合并后的中位数(如果两个数组的元素数目是偶数,返回上中位数). 设两个数组分别是vec1和vec2,元素数目分别是n1.n2. 算法1:最简单的办法就是把两个数组合并.排序,然后返回中位数即可,由于两个数组原本是有序的,因此可以用归并排序中的merge步骤合并两个数组.由于我们只需要返回中位数,因此并不需要真的合并两个数组,只需要模拟合并两个数组:每次选数组中较小的数,统计到第(n1+n2+1)/2个元素就是要找的中位数.算法复杂度为O(n1+n2) in…
先吐槽一下,我好气啊,想了很久硬是没有做出来,题目要求的时间复杂度为O(log(m+n)),我猜到了要用二分法,但是没有想到点子上去.然后上网搜了一下答案,感觉好有罪恶感. 题目原型 正确的思路是:把问题转化一下,假设任意给一个k值,求这两个数组合并并按大小排序之后的第k个值.如此一来求中位数只是一个特例而已. 那如何搜索两个有序序列中第k个元素呢,这里又有个技巧.假设序列都是从小到大排列,对于第一个序列中前p个元素和第二个序列中前q个元素,我们想要的最终结果是:p+q等于k-1,且一序列第p个…
题目: 有两个数组A和B,假设A和B已经有序(从大到小),求A和B数组中所有数的第K大. 思路: 1.如果k为2的次幂,且A,B 的大小都大于k,那么 考虑A的前k/2个数和B的前k/2个数, 如果A[k/2]<B[k/2],说明A的前k/2个数一定在A和B总的前k个数中,因此只需要在A的k/2之后的数和B中查找第k/2大的数: 否则,说明A的前k/2个数一定在A和B总的前k个数中,因此只需要在B的k/2之后的数和A中查找第k/2大的数: 递归实现即可: 2.如果A+B的数组大小大于k 二分法,…
传统解法,最直观的解法是O(m+n).直接merge两个数组,然后求第K大的数字. 如果想要时间复杂度将为O(log(m+n)).我们可以考虑从K入手.如果我们每次能够删除一个一定在第K个元素之前的元素,那么我们需要进行K次,但是如果每次我们都删除一半呢?由于两个数组都是有序的,我们应该充分利用这个信息. 假设A B 两数组的元素都大于K/2,我们将A B两数组的第K/2个元素进行比较.比较的结果有三种情况. A[K/2] == B[K/2] A[K/2] > B[K/2] A[K/2] <=…
二分.情况讨论 因为数组有序,所以能够考虑用二分.通过二分剔除掉肯定不是第k位数的区间.如果数组A和B当前处理的下标各自是mid1和mid2.则 1.假设A[mid1]<B[mid2], ①.若mid1+mid2+2==k(+2是由于下标是从0開始的),则 mid1在大有序数组中下标肯定小于k,所以能够排除[0,mid1].此外.B[mid2]下标大于或等于k.能够排除[mid2+1,n]: ②.若mid1+mid2+2<k,则 mid1在大有序数组中下标肯定小于k,所以能够排除[0,mid1…
我的思路是: 用队列,  从(0,0)開始入队,每次出队的时候,选(1,0) (0,1) 之间最小的入队,假设是相等的都入队,假设入过队的就不入了,把出队的k个不同的输出来就可以 我測试了几组数据都是对的.可是可能还是会有BUG,或者我忽略的地方.以下是我的实现代码(假设有错,请大家积极指正) import java.util.LinkedList; import java.util.Queue; /** * 有两个序列 A 和 B,A=(a1,a2,...,ak),B=(b1,b2,...,b…
中位数是把一个数的集合划分为两部分,每部分包含的数字个数相同,并且一个集合中的元素均大于另一个集合中的元素. 因此,我们考虑在一个任意的位置,将数组A划分成两部分.i表示划分数组A的位置,如果数组A包含m个元素,则划分位置有m+1种情况.因此,i的取值范围是0~m. 当i=0时,表示left_A为空:当i=m时,表示right_A为空. 同理,我们也可以划分B数组: 我们把left_A和left_B放到一个集合中,把right_A和right_B放到一个集合中. 如果想要获得中位数,要保证len…
There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)). You may assume nums1 and nums2 cannot be both empty. Example 1: nums1 = [1, 3]…
题目描述: 给定两个大小为 m 和 n 的有序数组 nums1 和 nums2. 请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n)). 你可以假设 nums1 和 nums2 不会同时为空. 示例 1: nums1 = [1, 3]nums2 = [2] 则中位数是 2.0示例 2: nums1 = [1, 2]nums2 = [3, 4] 则中位数是 (2 + 3)/2 = 2.5 解法一:虽然不符合时间复杂度要求,但是为了说明一下思路,还是cover一下,…