GPU编程--Shared Memory(4)】的更多相关文章

GPU的内存按照所属对象大致分为三类:线程独有的.block共享的.全局共享的.细分的话,包含global, local, shared, constant, and texture memoey, 我们重点关注以下两类内存 Global memory Global memory resides in device memory and device memory is accessed via 32-, 64-, or 128-bytes memory transactions Shared…
博主因为工作其中的须要,開始学习 GPU 上面的编程,主要涉及到的是基于 GPU 的深度学习方面的知识.鉴于之前没有接触过 GPU 编程.因此在这里特地学习一下 GPU 上面的编程. 有志同道合的小伙伴,欢迎一起交流和学习.我的邮箱: caijinping220@gmail.com .使用的是自己的老古董笔记本上面的 Geforce 103m 显卡,尽管显卡相对于如今主流的系列已经很的弱,可是对于学习来说.还是能够用的.本系列博文也遵从由简单到复杂,记录自己学习的过程. 0. 文件夹 GPU 编…
CUDA SHARED MEMORY shared memory在之前的博文有些介绍,这部分会专门讲解其内容.在global Memory部分,数据对齐和连续是很重要的话题,当使用L1的时候,对齐问题可以忽略,但是非连续的获取内存依然会降低性能.依赖于算法本质,某些情况下,非连续访问是不可避免的.使用shared memory是另一种提高性能的方式. GPU上的memory有两种: · On-board memory · On-chip memory global memory就是一块很大的on…
深度学习的兴起,使得多线程以及GPU编程逐渐成为算法工程师无法规避的问题.这里主要记录自己的GPU自学历程. 目录 <GPU编程自学1 -- 引言> <GPU编程自学2 -- CUDA环境配置> <GPU编程自学3 -- CUDA程序初探> <GPU编程自学4 -- CUDA核函数运行参数> <GPU编程自学5 -- 线程协作> <GPU编程自学6 -- 函数与变量类型限定符> <GPU编程自学7 -- 常量内存与事件>…
CUDA SHARED MEMORY shared memory在之前的博文有些介绍,这部分会专门讲解其内容.在global Memory部分,数据对齐和连续是很重要的话题,当使用L1的时候,对齐问题可以忽略,但是非连续的获取内存依然会降低性能.依赖于算法本质,某些情况下,非连续访问是不可避免的.使用shared memory是另一种提高性能的方式. GPU上的memory有两种: · On-board memory · On-chip memory global memory就是一块很大的on…
GPU编程和流式多处理器 流式多处理器(SM)是运行CUDA内核的GPU的一部分.本章重点介绍SM的指令集功能. 流式多处理器(SM)是运行我们的CUDA内核的GPU的一部分.每个SM包含以下内容. 可以在执行线程之间划分的数千个寄存器 几个缓存: –共享内存,用于线程之间的快速数据交换 –恒定高速缓存,用于快速广播恒定内存中的读取 –纹理缓存,以聚合纹理内存的带宽 – L1缓存,可减少对本地或全局内存的延迟 Warp调度程序可以快速在线程之间切换上下文,并向准备执行的Warp发出指令 用于整数…
See at: 补充栏3: C++对象和共享内存 (叙述内容和Link1的内容基本一致) <C++网络编程 卷1:运用ACE和模式消除复杂性> <C++ Network Programming Volume 1 Mastering Complexity with ACE and Patterns> -Douglas C.Schmidt, Stephen D. Huston -叶斌译 关于这个问题的一个扩展: p49, class ACE_IPC_SAP的constructor为pr…
深度学习的兴起,使得多线程以及GPU编程逐渐成为算法工程师无法规避的问题.这里主要记录自己的GPU自学历程. 目录 <GPU编程自学1 -- 引言> <GPU编程自学2 -- CUDA环境配置> <GPU编程自学3 -- CUDA程序初探> <GPU编程自学4 -- CUDA核函数运行参数> <GPU编程自学5 -- 线程协作> <GPU编程自学6 -- 函数与变量类型限定符> <GPU编程自学7 -- 常量内存与事件>…
GPU 编程可以称为异构编程,最近由于机器学习的火热,很多模型越来越依赖于GPU来进行加速运算,所以异构计算的位置越来越重要:异构编程,主要是指CPU+GPU或者CPU+其他设备(FPGA等)协同计算.当前的计算模型中,CPU主要用来进行通用计算,其更多的是注重控制,我们可以通过GPU和FPGA等做专用的计算. CPU负责逻辑性强的事物处理和串行计算,GPU则专注于执行高度线程化的并行处理任务(大规模计算任务) 编程框架: C++ AMP:Accelerator Massive Parallel…
#include "cuda_runtime.h" #include "device_launch_parameters.h" #include "device_functions.h" #include <stdio.h> #include <windows.h> #include <m_tools.h> cudaError_t addWithCuda(int *c, const int *a, const…