Memcache存储大数据的问题】的更多相关文章

Memcached存储单个item最大数据是在1MB内,假设数据超过1M,存取set和get是都是返回false,并且引起性能的问题. 我们之前对排行榜的数据进行缓存,因为排行榜在我们全部sql select查询里面占了30%,并且我们排行榜每小时更新一次,所以必须对数据做缓存.为了清除缓存方便,把全部的用户的数据放在同一key中,因为memcached:set的时候没有压缩数据.在測试服測试的时候,没发现问题,当上线的时候,结果发现,在线人数刚刚490人的时候,serverload avera…
Memcached存储单个item最大数据是在1MB内,如果数据超过1M,存取set和get是都是返回false,而且引起性能的问题. 我们之前对排行榜的数据进行缓存,由于排行榜在我们所有sql select查询里面占了30%,而且我们排行榜每小时更新一次,所以必须对数据做缓存.为了清除缓存方便,把所有的用户的数据放在同一key中,由于memcached:set的时候没有压缩数据.在测试服测试的时候,没发现问题,当上线的时候,结果发现,在线人数刚刚490人的时候,服务器load average飘…
Memcache存储大数据的问题  huangguisu Memcached存储单个item最大数据是在1MB内,假设数据超过1M,存取set和get是都是返回false,并且引起性能的问题. 我们之前对排行榜的数据进行缓存.因为排行榜在我们全部sql select查询里面占了30%,并且我们排行榜每小时更新一次,所以必须对数据做缓存. 为了清除缓存方便,把全部的用户的数据放在同一key中,因为memcached:set的时候没有压缩数据.在測试服測试的时候,没发现问题.当上线的时候,结果发现.…
今天有人问到我:memcache存储大数据量,10K,100K,1M的时候,效果怎么样??我回答:不好,效果非常慢.对方问:为什么啊??我回答不上来...于是就找了点资料. memcached使用需要注意的知识: 1.memcached的基本设置1)启动Memcache的服务器端# /usr/local/bin/memcached -d -m 10 -u root -l 192.168.0.200 -p 12000 -c 256 -P /tmp/memcached.pid -d选项是启动一个守护…
利用MySQL数据库如何解决大数据量存储问题? 各位高手您们好,我最近接手公司里一个比较棘手的问题,关于如何利用MySQL存储大数据量的问题,主要是数据库中的两张历史数据表,一张模拟量历史数据和一张开关量历史数据表,这两张表字段设计的很简单(OrderNo,Value,DataTime).基本上每张表每天可以增加几千万条数据,我想问如何存储数据才能不影响检索速度呢?需不需要换oracle数据库呢?因为我是数据库方面的新手,希望可以说的详细一点,万分感谢!!?-0-#暂时可以先考虑用infobri…
我们都知道现在大数据存储用的基本都是 Hadoop Hdfs ,但在 Hadoop 诞生之前,我们都是如何存储大量数据的呢?这次我们不聊技术架构什么的,而是从技术演化的角度来看看 Hadoop Hdfs. 我们先来思考两个问题. 在 Hdfs 出现以前,计算机是通过什么手段来存储"大数据" 的呢? 为什么会有 Hadoop Hdfs 出现呢? 在 Hadoop Hdfs 出现以前,计算机是通过什么手段来存储"大数据" 要知道,存储大量数据有三个最重要的指标,那就是速…
我们都知道现在大数据存储用的基本都是 Hdfs ,但在 Hadoop 诞生之前,我们都是如何存储大量数据的呢?这次我们不聊技术架构什么的,而是从技术演化的角度来看看 Hadoop Hdfs. 我们先来思考两个问题. 在 Hdfs 出现以前,计算机是通过什么手段来存储“大数据” 的呢? 为什么会有 Hadoop Hdfs 出现呢?在 Hdfs 出现以前,计算机是通过什么手段来存储“大数据” 要知道,存储大量数据有三个最重要的指标,那就是速度,容量,容错性.速度和容量的重要性毋庸置疑,如果容量不够大…
一.引言 通常我们认为静态网页html的网站速度是最快的,但是自从有了动态网页之后,很多交互数据都从数据库查询而来,数据也是经常变化的,除了一些新闻资讯类的网站,使用html静态化来提高访问速度是不太现实的方案.我们不得不在代码与数据库之间寻求一种更合适的解决方案. 减少数据库访问次数,文件和数据库分离,大数据分布式存储,服务器的集群负载均衡,页面缓存的使用,nosql内存数据库代替关系型数据库,这些方案措施都是提高系统高并发性能的关键,下面一一分解. 二.分解 (1)       分布式服务器…
二级缓存大量数据的解决方案 数据很大 二级缓存 存储大数据,让 内存和磁盘文件进行交互,数据库中的不变的数据在磁盘上,这样就可以少和数据库进行交互了 ehcache.xml 放在src下 <ehcache xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="../config/ehcache.xsd"> <!--存储位置-->…
Hadoop简介 官方网站:  http://hadoop.apache.org/ 中文网站:  http://hadoop.apache.org/docs/r1.0.4/cn/ Hadoop设计来源 根据Google的三大论文 GFS(Google File System): Google的分布式文件系统       http://www.cnblogs.com/999-/p/7120490.html MapReduce: Google的MapReduce开源分布式并行计算框架 http://…
[注1:结尾有大福利!] [注2:想写一个大数据小白系列,介绍大数据生态系统中的主要成员,理解其原理,明白其用途,万一有用呢,对不对.] 大数据是什么?抛开那些高大上但笼统的说法,其实大数据说的是两件事:一.怎么存储大数据,二.怎么计算大数据. 我们先从存储开始说,如果清晨起床,你的女仆给你呈上一块牛排,牛排太大,一口吃不了,怎么办?拿刀切小. 同样的,如果一份数据太大,一台机器存不了,怎么办?切小了,存到几台机器上. 想要保存海量数据,无限地提高单台机器的存储能力显然是不现实,就好比我们不能把…
Spark MLlib进行example测试的时候,总是编译不通过,报少包<Spark MLlib NoClassDefFoundError: org/apache/spark/ml/param/Param>,但是代码没有报错,也能够跳转过去,我重新Maven刷过,程序还是启不来.后来观察到pom.xml中mllib是‘provided’的,去掉就好了. 原因就是provided是表示所在容器是包含这个包的,只会作用在编译.测试阶段:而默认的compile则是在编译.测试.运行阶段都需要的.…
sql server或者说关系型数据库中不要做一个字段存储大数据量的设计,比如要插入3000w条数据,然后每条数据中有一个文章字段,这个字段每条大概都需要存储几m的数据,那么算下来这个表就得有几百个G,那么此时sql server这个表就很难维护了,比如新建个字段,更新个索引等等,基本上无法操作了. 解决方式 1.把文章字段的数据存成文件. 2.直接换文档型数据库,比如Mongodb等等. 其实原则就是关系型数据库主要存储业务数据为主,大信息类数据需要文档结构或者文档型数据库处理.…
Hadoop介绍 一.简介 Hadoop是一个开源的分布式计算平台,用于存储大数据,并使用MapReduce来处理.Hadoop擅长于存储各种格式的庞大的数据,任意的格式甚至非结构化的处理.两个核心: HDFS:Hadoop分布式文件系统(Hadoop Distributed File System),具有高容错性和伸缩性,使用java开发 MapReduce:Google MapReduce的开源实现,分布式编程模型使用户更方便的开发并行应用 使用Hadoop可以轻松的组织计算机资源,从而搭建…
目录 前言: 基本概念 对于Mysql的Text类型 流地址的写法 blob类型数据 备注 前言: 在实际开发中,程序需要把 大文本或二进制 数据保存到数据库中: 实际上,我们并不存储大的数据到数据库中,基本上都是存储资源地址进去 : 但是数据库存储大数据的技术,我们还是要学习一下 : 基本概念 大数据也被称为 LOB(large object),LOB又分为:clob 和 blob . clob: 用于存储文本. blob:用于存储二进制数据,例如:图像.电影.声音: 其中对于 Mysql 而…
hadoop 创始人 DogCutting 高效,可扩展性,高容错性,价格低廉的大数据软件处理架构 主要应用于数据分析.数据实时查询.数据挖掘领域 HDFS(HadoopDistributeFileSystem 分布式文件系统) 总结:从字面意思我们可以简单理解为:hadoop是用来处理大数据的,HDFS是用来存储大数据的. -*-hadoop项目结构-*- MapReduce 主要用于离线计算 Tez (DAG计算)基于YAN之上生成无向循环图,优化计算 Spark 和Mapreduce相似在…
摘要:2019年1月18日,由阿里巴巴MaxCompute开发者社区和阿里云栖社区联合主办的“阿里云栖开发者沙龙大数据技术专场”走近北京联合大学,本次技术沙龙上,阿里巴巴高级技术专家吴永明为大家分享了MaxCompute,基于Serverless的高可用大数据服务,以及MaxCompute低计算成本背后的秘密. 以下内容根据演讲视频以及PPT整理而成. 一.什么是MaxCompute Big Data in Alibaba首先为大家介绍阿里巴巴大数据技术的一些相关背景.正如下图所示,阿里巴巴其实…
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/84 本文地址:http://www.showmeai.tech/article-detail/172 声明:版权所有,转载请联系平台与作者并注明出处 1.大数据与数据库 1) 从Hadoop到数据库 大家知道在计算机领域,关系数据库大量用于数据存储和维护的场景.大数据的出现后,很多公司转而选择像 Hadoop/Spark 的大数据解决方案. Hadoop使用分布式文件系统,用于存储大…
课程简介: 随着互联网的发展,高并发.大数据量的网站要求越来越高.而这些高要求都是基础的技术和细节组合而成的.本课程就从实际案例出发给大家原景重现高并发架构常用技术点及详细演练. 通过该课程的学习,普通的技术人员就可以快速搭建起千万级的高并发大数据网站平台. 亮点一:真实环境还原,课程采用了VM环境重现大网站集群服务器环境,真实环境还原再现. 亮点二:基础实用,细节决定成败,课程内容在演练过程中重点介绍各种细节,保证初级人员快速入门及高级进阶. 亮点三:讲师丰富的海量平台运作经验 讲师tom5多…
提问:如何设计或优化千万级别的大表?此外无其他信息,个人觉得这个话题有点范,就只好简单说下该如何做,对于一个存储设计,必须考虑业务特点,收集的信息如下:1.数据的容量:1-3年内会大概多少条数据,每条数据大概多少字节: 2.数据项:是否有大字段,那些字段的值是否经常被更新: 3.数据查询SQL条件:哪些数据项的列名称经常出现在WHERE.GROUP BY.ORDER BY子句中等: 4.数据更新类SQL条件:有多少列经常出现UPDATE或DELETE 的WHERE子句中: 5.SQL量的统计比,…
转载自:https://www.cnblogs.com/ryanzheng/p/8334915.html 提问:如何设计或优化千万级别的大表?此外无其他信息,个人觉得这个话题有点范,就只好简单说下该如何做,对于一个存储设计,必须考虑业务特点,收集的信息如下:1.数据的容量:1-3年内会大概多少条数据,每条数据大概多少字节: 2.数据项:是否有大字段,那些字段的值是否经常被更新: 3.数据查询SQL条件:哪些数据项的列名称经常出现在WHERE.GROUP BY.ORDER BY子句中等: 4.数据…
锁粒度与并发性能怎么样? 数据库的读写并发性能与锁的粒度息息相关,不管是读操作还是写操作开始运行时,都会请求相应的锁资源,如果请求不到,操作就会被阻塞.读操作请求的是读锁,能够与其它读操作共享,但是当写操作请求数据库时,它所申请的是写锁,具有排它性. MongoDB在2.2之前的版本,锁的粒度是非常粗的,它会锁住整个mongod实例.这意味着当一个数据库上的写锁被请求后,对mongod实例上管理的其它数据库的操作都会被阻塞.2.2版本降低了锁的粒度,引入了单个数据库范围的锁,也就是说读写操作的锁…
大数据架构-使用HBase和Solr将存储与索引放在不同的机器上 摘要:HBase可以通过协处理器Coprocessor的方式向Solr发出请求,Solr对于接收到的数据可以做相关的同步:增.删.改索引的操作,这样就可以同时使用HBase存储量大和Solr检索性能高的优点了,更何况HBase和Solr都可以集群.这对海量数据存储.检索提供了一种方式,将存储与索引放在不同的机器上,是大数据架构的必须品. 关键词:HBase, Solr, Coprocessor, 大数据, 架构   正如我的之前的…
将一张图片存储在mysql中,并读取出来(BLOB数据:插入BLOB类型的数据必须使用PreparedStatement,因为插入BLOB类型的数据无法使用字符串拼写): ------------------------------------------------------------------------------------------------------------------ package com.lanqiao.javatest; import java.io.File…
在过去的很长一段时间中,关系型数据库(Relational Database Management System)一直是最主流的数据库解决方案,他运用真实世界中事物与关系来解释数据库中抽象的数据架构.然而,在信息技术爆炸式发展的今天,大数据已经成为了继云计算,物联网后新的技术革命,关系型数据库在处理大数据量时已经开始吃力,开发者只能通过不断地优化数据库来解决数据量的问题,但优化毕竟不是一个长期方案,所以人们提出了一种新的数据库解决方案来迎接大数据时代的到来——NoSQL(非关系型数据库). 为什…
1.开机启动Hadoop,输入命令:  检查相关进程的启动情况: 2.对Hadoop集群做一个测试:   可以看到新建的test1.txt和test2.txt已经成功地拷贝到节点上(伪分布式只有一个节点,如果是完全分布式,则会显示3个节点都拷贝成功).这证明HDFS工作正常,其中,hadoop dfs –put [本地地址] [hadoop目录] 代表将本地的地址目录存放到hadoop目录下:hadoop dfs –ls [文件目录] 则表示查看指定目录下的内容.更多Hadoop的常用指令请参考…
在过去的十年中,计算世界已经改变.现在不仅在大公司,甚至一些小公司也积累了TB量级的数据.各种规模的组织开始有了处理大数据的需求,而目前关系型数据库在可缩放方面几乎已经达到极限. 一个解决方案是使用键值(Key-Value)存储数据库,这是一种NoSQL(非关系型数据库)模型,其数据按照键值对的形式进行组织.索引和存储.KV存储非常适合不涉及过多数据关系业务关系的业务数据,同时能有效减少读写磁盘的次数,比SQL数据库存储拥有更好的读写性能. 本文就为你介绍9种用于大数据处理的免费键值存储数据库.…
原文地址:http://www.cnblogs.com/mokafamily/p/4076954.html 爆炸式发展的NoSQL技术 在过去的很长一段时间中,关系型数据库(Relational Database Management System)一直是最主流的数据库解决方案,他运用真实世界中事物与关系来解释数据库中抽象的数据架构.然而,在信息技术爆炸式发展的今天,大数据已经成为了继云计算,物联网后新的技术革命,关系型数据库在处理大数据量时已经开始吃力,开发者只能通过不断地优化数据库来解决数据…
在过去的十年中,计算世界已经改变.现在不仅在大公司,甚至一些小公司也积累了TB量级的数据.各种规模的组织开始有了处理大数据的需求,而目前关系型数据库在可缩放方面几乎已经达到极限. 一个解决方案是使用键值(Key-Value)存储数据库,这是一种NoSQL(非关系型数据库)模型,其数据按照键值对的形式进行组织.索引和存储.KV存储非常适合不涉及过多数据关系业务关系的业务数据,同时能有效减少读写磁盘的次数,比SQL数据库存储拥有更好的读写性能. 本文就为你介绍9种用于大数据处理的免费键值存储数据库.…
Sqlserver 高并发和大数据存储方案 随着用户的日益递增,日活和峰值的暴涨,数据库处理性能面临着巨大的挑战.下面分享下对实际10万+峰值的平台的数据库优化方案.与大家一起讨论,互相学习提高!  案例:游戏平台. 1.解决高并发 当客户端连接数达到峰值的时候,服务端对连接的维护与处理这里暂时不做讨论.当多个写请求到数据库的时候,这时候需要对多张表进行插入,尤其一些表 达到每天千万+的存储,随着时间的积累,传统的同步写入数据的方式显然不可取,经过试验,通过异步插入的方式改善了许多,但与此同时,…