摘要:在两次握手的情况下,「被动发起方」没有中间状态给「主动发起方」来阻止历史连接,导致「被动发起方」可能建立一个历史连接,造成资源浪费. 本文分享自华为云社区<TCP 两次握手为什么无法阻止历史连接?>,作者:小林coding . 两次握手的情况下,「被动发起方」在收到 SYN 报文后,就进入 ESTABLISHED 状态,意味着这时可以给对方发送数据给,但是「主动发」起方此时还没有进入 ESTABLISHED 状态,假设这次是历史连接,主动发起方判断到此次连接为历史连接,那么就会回 RST…
TCP的三次握手已经说烂了,TCP为何要三次握手?为何不两次握手也有很多说法.对于这些类似的问题,最好的办法是看RFC 常规思路,由面到点 两军问题 在不可靠通信下,两军想要达到状态一致是无解的.因为在不可靠信道下,一边状态的确认需要另一边的回复(ACK),而另一边回复时再次面临不可靠信道问题,这样就回到了问题的最初,无限递归 既然“两军问题”无解,TCP也面临此问题,为何TCP还能可靠传输数据呢? 两军A,B为达成一致状态,A需要知道B是否收到信息(A-->B),B需要知道A是否知道B已经收到…
TCP在传输之前会进行三次沟通,一般称为"三次握手",传完数据断开的时候要进行四次沟通,一般称为"四次挥手". 两个序号和三个标志位: (1)序号:seq序号,占32位,用来标识从TCP源端向目的端发送的字节流,发起方发送数据时对此进行标记.  (2)确认序号:ack序号,占32位,只有ACK标志位为1时,确认序号字段才有效,ack=seq+1.  (3)标志位:共6个,即URG.ACK.PSH.RST.SYN.FIN等,具体含义如下:  (A)URG:紧急指针(u…
转载 记得刚毕业找工作面试的时候,经常会被问到:你知道“3次握手,4次挥手”吗?这时候我会“胸有成竹”地“背诵”前期准备好的“答案”,第一次怎么怎么,第二次……答完就没有下文了,面试官貌似也没有深入下去的意思,深入下去我也不懂,皆大欢喜! 作为程序员,要有“刨根问底”的精神.知其然,更要知其所以然.这篇文章希望能抽丝剥茧,还原背后的原理. 什么是“3次握手,4次挥手” TCP是一种面向连接的单播协议,在发送数据前,通信双方必须在彼此间建立一条连接.所谓的“连接”,其实是客户端和服务器的内存里保存…
TCP报文首部 源端口和目的端口,各占2个字节,分别写入源端口和目的端口: 序号,占4个字节,TCP连接中传送的字节流中的每个字节都按顺序编号.例如,一段报文的序号字段值是 301 ,而携带的数据共有100字段,显然下一个报文段(如果还有的话)的数据序号应该从401开始: 确认号,占4个字节,是期望收到对方下一个报文的第一个数据字节的序号.例如,B收到了A发送过来的报文,其序列号字段是501,而数据长度是200字节,这表明B正确的收到了A发送的到序号700为止的数据.因此,B期望收到A的下一个数…
先上一张图 (图片来源:http://www.cnxct.com/something-about-phpfpm-s-backlog/) 如上图所示,这里有两个队列:syns queue(半连接队列):accept queue(全连接队列) TCP三次握手中: 第一步,server收到client的syn后,server把这个连接信息放到半连接队列中,; 第二步,server回复syn+ack给client; 第三步,server收到client的ack,这时如果全连接队列没满,server就从半…
活久见!TCP两次挥手,你见过吗?那四次握手呢? 文章持续更新,可以微信搜一搜「小白debug」第一时间阅读,回复[教程]获golang免费视频教程.本文已经收录在GitHub https://github.com/xiaobaiTech/golangFamily , 有大厂面试完整考点和成长路线,欢迎Star. 我们都知道,TCP是个面向连接的.可靠的.基于字节流的传输层通信协议. 那这里面提到的"面向连接",意味着需要 建立连接,使用连接,释放连接. 建立连接是指我们熟知的TCP三…
两将军问题,又被称为两将军悖论.两军问题, 是一个经典的计算机思想实验. 首先, 为避免混淆,我们需要认识到两将军问题虽然与拜占庭将军问题相关,但两者不是一个东西.拜占庭将军问题是一个更通用的两将军问题版本, 通常在分布式系统故障容错.区块链中广泛讨论. 1.双将军问题 两支军队,驻扎在两个山头,准备攻击山谷里的同一伙敌人,两将军只有同时发起进攻才能获胜,两将军通信的的唯一方式是派遣信使通过山谷,山谷处于敌占区. 如果信使被俘获了,那么攻击信息将会丢失. 宏观现象一: 两将军先后派遣信使,交替确…
为什么不采用两次握手?如果是两次握手的情景:客户端在发送一个连接建立请求之后进入等待状态,等到服务端确认之后就进入established状态.服务端在发送一个确认连接建立请求报文之后(不管客户端是否有回应)也进入established状态.这就好比,A给B打电话,A:你听得到我说话吗?B:我听得到啊A和B就都以为对方都能听得到自己了.但有一种情况是,B的麦是坏的,A根本就听不到B说话,结果A没收到B的回应,但B却以为A能听得到他,B就一直等着A说点什么...这样让B身心俱疲. 三次握手:客户端在…
1.第一次握手,发送SYN报文,传达信息:“你好,我想建立连接”: 第二次握手,回传SYN+ACK报文,传达信息:“好的,可以建立链接”:    第三次握手,回传ACK报文,传到信息:“好的,我知道了,那我们连接”.然后就建立连接了. 2.在发送报文之前各方都要确认可以进行连接.之所以采取三次握手机制,不过是为了信息传输的可靠性,如果其中某个握手失败,这个过程将会重复,来确保其可靠性. 3.如果采取两次握手,相当于第二次握手结束便建立连接,如果发送SYN的一方不想连接了,也不会有反馈,另一方却一…
每日一句英语学习,每天进步一点点: 前言 不管面试 Java .C/C++.Python 等开发岗位, TCP 的知识点可以说是的必问的了. 任 TCP 虐我千百遍,我仍待 TCP 如初恋. 遥想小林当年校招时常因 TCP 面试题被刷,真是又爱又狠…. 过去不会没关系,今天就让我们来消除这份恐惧,微笑着勇敢的面对它吧! 所以小林整理了关于 TCP 三次握手和四次挥手的面试题型,跟大家一起探讨探讨. TCP 基本认识 TCP 连接建立 TCP 连接断开 Socket 编程 PS:本次文章不涉及 T…
一.TCP握手流程 二.为什么不是4次握手 TCP的每次请求都是成对的,原则上应该是四次 [Client to Server]第一次SYN,seq=x [Server to Client]第二次ACK,seq=y,ack=x+1(没有携带数据的ACK不消耗序列号) [Server to Client]第三次SYN,seq=y, [Client to Server]第四次ACK,seq=x+1,ack=y+1. 可以看出第二次和第三次都是Server to Client,且他们之间没有任何事件发生…
TCP 的三次握手和四次挥手,可以说是老生常谈的经典问题了,通常也作为各大公司常见的面试考题,具有一定的水平区分度.看似是简单的面试问题,如果你的回答不符合面试官期待的水准,有可能就直接凉凉了. 本文会围绕,三次握手和四次挥手相关的一些列核心问题,分享如何更准确的回答和应对常见的面试问题,以后面对再刁钻的面试官,你都可以随意地跟他扯皮了. 面试TCP的意义 我想要先说明一个重要问题,到底面试 TCP 的意义何在? 经常会听到这样抱怨:我是做业务程序开发的,面试官竟然问我 TCP 三次握手.TCP…
临近5月,春招和实习招聘逐渐进入尾声.本文主要讨论面试中经常提问的TCP连接的机制,附带一些扩展知识. 参加面试的时候,过半的面试官都会问TCP相关问题,而最常见的问题就是:讲一下TCP三次握手(四次挥手). 一般来说,TCP连接的过程是客户端发起,服务端确认请求,客户端再确认的三次握手过程. 具体三次如下: 1.客户端向服务器端发送SYN=1的TCP包,并附带初始序列号x.发送后,客户端的状态是SYN_SEND状态. 2.服务器端向客户端发送SYN=1,ACK=1的确认包,其序列号是服务器自己…
版权声明:本文由黄日成原创文章,转载请注明出处: 文章原文链接:https://www.qcloud.com/community/article/108 来源:腾云阁 https://www.qcloud.com/community 在”从TCP三次握手说起–浅析TCP协议中的疑难杂症(1)“文章中,我们提到第6个疑问:TCP的头号疼症TIME_WAIT状态,下面我们继续这个问题的解答 TIME_WAIT的快速回收和重用 TIME_WAIT快速回收.linux下开启TIME_WAIT快速回收需要…
一个(tct)socket连接需要在客户端与服务端开启一个隧道,客户端提供一个端口(new时可指定,也可不指定,随机),服务端的端口和地址一定要指定.在win下,服务端创建监听端口时,防火墙会提示阻止,这时要解除这个端口的阻止才能让客户端连接.   客户端连接时,由于windows防火墙不过滤所有的主动请求,所以不会被防火墙阻止(ftp例外),但是在tcp三次握手的第二次,服务端响应的syn和ack相当于服务端连接客户端,此时防火墙是否会阻止第二次握手?待验证   查资料感觉第二次握手不会被过滤…
TCP三次握手和四次挥手 TCP有6种标示:SYN(建立联机) ACK(确认) PSH(传送) FIN(结束) RST(重置) URG(紧急) 一.TCP三次握手   第一次握手 客户端向服务器发出连接请求报文,这时报文首部中的同部位SYN=1,同时随机生成初始序列号 seq=x,此时,TCP客户端进程进入了 SYN-SENT(同步已发送状态)状 态.TCP规定,SYN报文段(SYN=1的报文段)不能携带数据,但需要消耗掉一个序号.这个三次握手中的开始.表示客户端想要和服务端建立连接. 第二次握…
TCP有6种标识:    1.SYN(建立连接) 2.ACK(确认) 3.PSH(传送) 4.FIN(结束) 5.RST(重置) 6.URG(紧急) 一.TCP三次握手   第一次握手(发送:连接请求) 客户端向服务器,发出连接请求报文,这时报文首部中的同部位SYN=1,同时随机生成初始序列号 seq=x,此时,TCP客户端进程进入了 SYN-SENT(同步已发送状态)状 态.TCP规定,SYN报文段(SYN=1的报文段)不能携带数据,但需要消耗掉一个序号.这个三次握手中的开始.表示客户端想要和…
大家好,我是小林. 为什么 TCP 三次握手期间,客户端和服务端的初始化序列号要求不一样的呢? 接下来,我一步一步给大家讲明白,我觉得应该有不少人会有类似的问题,所以今天在肝一篇! 正文 为什么 TCP 三次握手期间,为什么客户端和服务端的初始化序列号要求不一样的呢? 主要原因是为了防止历史报文被下一个相同四元组的连接接收. TCP 四次挥手中的 TIME_WAIT 状态不是会持续 2 MSL 时长,历史报文不是早就在网络中消失了吗? 是的,如果能正常四次挥手,由于 TIME_WAIT 状态会持…
一. TCP/IP协议族 TCP/IP是一个协议族,通常分不同层次进行开发,每个层次负责不同的通信功能.包含以下四个层次: 1. 链路层,也称作数据链路层或者网络接口层,通常包括操作系统中的设备驱动程序和计算机中对应的网络接口卡.它们一起处理与电缆(或其他任何传输媒介)的物理接口细节. 2. 网络层,也称作互联网层,处理分组在网络中的活动,例如分组的选路.网络层协议包括IP协议(网际协议).ICMP协议(Internet互联网控制报文协议),以及IGMP协议(Internet组管理协议). 3.…
OSI 计算机网络7层模型 TCP/IP四层网络模型 传输层提供应用间的逻辑通信(端到端),网络层提供的是主机到主机的通信,传输层提供的是可靠服务. TCP 中常说的握手指的是:连接的定义和连接的建立的过程.IP 协议是无连接的,但是 TCP 是有链接的. 端口:数据链路层依靠 mac 地址寻址,网络接口层依靠 ip 地址寻址,传输层依靠端口号寻址,端口就是应用层的各种协议进程和传输实体之间进行层间交换的地址. 端口号:标识不同进程的号码,16位,2的16次方个,只在本地有意义.一共有三类,一是…
TCP是TCP/IP的传输层控制协议,提供可靠的连接服务,采用三次握手确认建立一个连接: 首先需要了解几个名词:tcp标志位,有6种分别为:SYN(synchronous建立联机) .ACK(acknowledgement 确认) .PSH(push传送) .FIN(finish结束). RST(reset重置) .URG(urgent紧急);URG 紧急指针,告诉接收TCP模块紧要指针域指着紧要数据.ACK 置1时表示确认号(为合法,为0的时候表示数据段不包含确认信息,确认号被忽略. PSH…
wireshark介绍 wireshark的官方下载网站: http://www.wireshark.org/ wireshark是非常流行的网络封包分析软件,功能十分强大.可以截取各种网络封包,显示网络封包的详细信息. wireshark是开源软件,可以放心使用. 可以运行在Windows和Mac OS上. 使用wireshark的人必须了解网络协议,否则就看不懂wireshark了. Wireshark不能做的 为了安全考虑,wireshark只能查看封包,而不能修改封包的内容,或者发送封包…
在TCP/IP协议中,TCP协议提供可靠的连接服务,采用三次握手建立一个连接. 第一次握手:建立连接时,客户端发送syn包(syn=j)到服务器,并进入SYN_SEND状态,等待服务器确认: 第二次握手:服务器收到syn包,必须确认客户的SYN(ack=j+1),同时自己也发送一个SYN包(syn=k),即SYN+ACK包,此时服务器进入SYN_RECV状态: 第三次握手:客户端收到服务器的SYN+ACK包,向服务器发送确认包ACK(ack=k+1),此包发送完毕,客户端和服务器进入ESTABL…
序言   通过这章,可以知道其实三次握手和四次挥手其实真的好简单,通过这章的学习,我相信你也会同样的认为,以后在也不需要听到别人问三次握手的过程而自己一脸懵逼了,觉得人家好屌,其实也就是他懂你不懂,仅此而已,不懂就去学.学了你就会觉得其实也就那样,没有什么厉害的,这让我回想以前刚学习编程的时候,那时候刚学C,别人就说会写java的helloworld,真TM觉得屌啊,我连helloworld是什么度不知道.一直羡慕人家,怎么这么厉害,然后自己心里很虚,自己这么菜啊,其实不然,不懂的就去学习,学懂…
TCP/IP协议不是TCP和IP这两个协议的合称,而是指因特网整个TCP/IP协议族. 从协议分层模型方面来讲,TCP/IP由四个层次组成:网络接口层.网络层.传输层.应用层. TCP协议:即传输控制协议,它提供的是一种可靠的数据流服务.当传送受差错干扰的数据,或举出网络故障,或网络负荷太重而使网际基本传输系统不能正常工作时,就需要通过其他的协议来保证通信的可靠.TCP就是这样的协议.TCP采用“带重传的肯定确认”技术来实现传输的可靠性.并使用“滑动窗口”的流量控制机制来高网络的吞吐量.TCP通…
TCP/IP通信的三次握手如下: TCP是主机对主机层的传输控制协议,提供可靠的连接服务: 位码即tcp标志位,有6种标示:SYN(synchronous建立联机) .ACK(acknowledgement 确认) .PSH(push传送). FIN(finish结束) .RST(reset重置) .URG(urgent紧急).Sequence number(顺序号码) .Acknowledge number(确认号码). 三次握手: 第一次握手:客户端发送syn包(syn=x)的数据包到服务器…
转载 http://www.cnblogs.com/zmlctt/p/3690998.html 相对于SOCKET开发者,TCP创建过程和链接折除过程是由TCP/IP协议栈自动创建的.因此开发者并不需要控制这个过程.但是对于理解TCP底层运作机制,相当有帮助. 而且对于有网络协议工程师之类笔试,几乎是必考的内容.企业对这个问题热情之高,出乎我的意料:-).有时上午面试前强调这个问题,并重复讲一次,下午几乎每一个人都被问到这个问题. 因此在这里详细解释一下这两个过程. TCP三次握手 所谓三次握手…
TCP三次握手及四次挥手详细图解 Andrew Huangbluedrum@163.com    相对于SOCKET开发者,TCP创建过程和链接折除过程是由TCP/IP协议栈自动创建的.因此开发者并不需要控制这个过程.但是对于理解TCP底层运作机制,相当有帮助.      而且对于有网络协议工程师之类笔试,几乎是必考的内容.企业对这个问题热情之高,出乎我的意料:-).有时上午面试前强调这个问题,并重复讲一次,下午几乎每一个人都被问到这个问题.   因此在这里详细解释一下这两个过程.   TCP三…
1.TCP是什么 关于OSI的七层模型 TCP在第四层——Transport层,第四层的数据叫Segment->报文 IP在第三层——Network层,在第三层上的数据叫Packet->数据包 ARP在第二层——Data Link层:在第二层上的数据,我们把它叫Frame->帧 数据从应用层发下来,会在每一层都会加上头部信息,进行封装,然后再发送到数据接收端,就是每个数据都会经过数据的封装和解封装的过程. wireshark抓到的包与对应的协议层如下图所示 Frame 36441: 物理…