AcWing822. 走方格】的更多相关文章

题目 给定一个\(n×m\)的方格阵,沿着方格的边线走,从左上角\((0,0)\)开始,每次只能往右或者往下走一个单位距离,问走到右下角\((n,m)\)一共有多少种不同的走法. 输入格式 共一行,包含两个整数\(n\)和\(m\). 输出格式 共一行,包含一个整数,表示走法数量. 数据范围 \(1≤n,m≤10\) 输入样例: 2 3 输出样例: 10 题解: dfs深搜.用最小的举例进行模拟.任何点都只要向右.或者是向下两种情况,建系来处理该问题.然后利用dfs进行搜索.注意边界问题即可.…
1120 . 机器人走方格 V3   基准时间限制:1 秒 空间限制:65536 KB 分值: 160 N * N的方格,从左上到右下画一条线.一个机器人从左上走到右下,只能向右或向下走.并要求只能在这条线的上面或下面走,不能穿越这条线,有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10007的结果.   Input 输入一个数N(2 <= N <= 10^9). Output 输出走法的数量 Mod 10007. Input 示例 4 Output 示例 10 思路:实际是本质…
矩阵快速幂求出每个点走n步后到某个点的方案数.然后暴力枚举即可 #include<cstdio> #include<cstring> #include<cctype> #include<algorithm> using namespace std; #define rep(i,s,t) for(int i=s;i<=t;i++) #define dwn(i,s,t) for(int i=s;i>=t;i--) #define clr(x,c) m…
跟括号序列是一样的,将向右走看成是左括号向左走看成是右括号就可以了.那么就是卡特兰数了.然后由于n和m太大所以用了lucas定理 //跟括号序列是一样的,将向右走看成是左括号向左走看成是右括号就可以了.那么就是卡特兰数了. #include<cstdio> #include<cstring> #include<cctype> #include<algorithm> using namespace std; #define rep(i,s,t) for(int…
终于学到了求组合数的正确姿势 //C(n+m-2,m-1) #include<cstdio> #include<cstring> #include<cctype> #include<algorithm> using namespace std; #define rep(i,s,t) for(int i=s;i<=t;i++) #define dwn(i,s,t) for(int i=s;i>=t;i--) #define ll long long…
51nod 1118 机器人走方格: 思路:这是一道简单题,很容易就看出用动态规划扫一遍就可以得到结果, 时间复杂度O(m*n).运算量1000*1000 = 1000000,很明显不会超时. 递推式子:dp[i][j] = dp[i-1][j] + dp[i][j-1].  dp[i][j]表示当规格为i*j  (m = i && n = j)  时本题的结果. 直接上代码: #include <stdio.h> #include <string.h> #defi…
1119 机器人走方格 V2 基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题 M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10^9 + 7的结果.   Input 第1行,2个数M,N,中间用空格隔开.(2 <= m,n <= 1000000) Output 输出走法的数量 Mod 10^9 + 7. Input示例 2 3 Output示例 3 //挺懵逼的,虽然看出动规后是个杨…
题目链接: 1119 机器人走方格 V2 基准时间限制:1 秒 空间限制:131072 KB    M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10^9 + 7的结果.   Input 第1行,2个数M,N,中间用空格隔开.(2 <= m,n <= 1000000) Output   输出走法的数量 Mod 10^9 + 7. Input示例 2 3 Output示例 3 题意: 中文的就不说了; 思路: 这题用dp…
1119 机器人走方格 V2  基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题  收藏  关注 M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10^9 + 7的结果. Input 第1行,2个数M,N,中间用空格隔开.(2 <= m,n <= 1000000) Output 输出走法的数量 Mod 10^9 + 7. Input示例 2 3 Output示例 3 C(n - 1 +…
1120 机器人走方格 V3  基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注 N * N的方格,从左上到右下画一条线.一个机器人从左上走到右下,只能向右或向下走.并要求只能在这条线的上面或下面走,不能穿越这条线,有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10007的结果. Input 输入一个数N(2 <= N <= 10^9). Output 输出走法的数量 Mod 10007. Input示例 4 Output示例 1…
走方格 问题描述在平面上有一些二维的点阵. 这些点的编号就像二维数组的编号一样,从上到下依次为第 1 至第 n 行,从左到右依次为第1 至第 m 列,每一个点可以用行号和列号来表示. 现在有个人站在第 1 行第 1 列,要走到第 n 行第 m 列.只能向右或者向下走. 注意,如果行号和列号都是偶数,不能走入这一格中. 问有多少种方案. 输入格式输入一行包含两个整数 n,m. 输出格式输出一个整数,表示答案. 样例输入1: 3 4 样例输出1 2 样例输入2: 6 6 样例输出2 0 packag…
目录 前言 题意简述 法一:时间复杂度 $Θ(m2n2)$ (TLE) $Code$ 法二:正解,时间复杂度 $Θ(mn)$ $Code$ 写在最后 洛谷 前言 题目传送门 正解:动态规划 挺 duliu 一道题,难度较大 qwq. PS:因为此篇题解前后改动较多,如果有什么错误请各位奆佬提出,本蒟蒻感激不尽 awa. 题意简述 给你一个 \(n\times m\) 大小的方格阵,可以把方格中的任意一个数改为 \(0\),每次从 \((1,1)\) 到 \((n,m)\) 的得分为路上所有数字的…
1122 机器人走方格 V4 基准时间限制:1 秒 空间限制:131072 KB  四个机器人a b c d,在2 * 2的方格里,一开始四个机器人分别站在4个格子上,每一步机器人可以往临近的一个格子移动或留在原地(同一个格子可以有多个机器人停留),经过n步后有多少种不同的走法,使得每个毯子上都有1机器人停留.由于方法数量巨大,输出 Mod 10^9 + 7的结果.   Input 输入1个数N(0 <= N <= 10^9) Output 输出走法的数量 Mod 10^9 + 7 Input…
1120 机器人走方格 V3 基准时间限制:1 秒 空间限制:131072 KB N * N的方格,从左上到右下画一条线.一个机器人从左上走到右下,只能向右或向下走.并要求只能在这条线的上面或下面走,不能穿越这条线,有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10007的结果.   Input 输入一个数N(2 <= N <= 10^9). Output 输出走法的数量 Mod 10007. Input示例 4 Output示例 10 思路:这个在对角线的上方,就可以转换为,火…
1119 机器人走方格 V2 基准时间限制:1 秒 空间限制:131072 KB M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10^9 + 7的结果.   Input 第1行,2个数M,N,中间用空格隔开.(2 <= m,n <= 1000000) Output 输出走法的数量 Mod 10^9 + 7. Input示例 2 3 Output示例 3思路:打个表找个规律,然后发现是组合数,然后取模费马小定理. 1 #…
从一个长方形的方格的右上角 走到 左下角 , 问一共有多少种不同的路线可以达到 . #include<stdio.h> #include<string.h> #include<math.h> #include<iostream> #include<algorithm> #include<queue> #include<vector> #include<set> #include<stack> #in…
N * N的方格,从左上到右下画一条线.一个机器人从左上走到右下,只能向右或向下走.并要求只能在这条线的上面或下面走,不能穿越这条线,有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10007的结果.   Input 输入一个数N(2 <= N <= 10^9). Output 输出走法的数量 Mod 10007. Input示例 4 Output示例 10 明显是一道卡特兰数,推出ans = C(2*n-2,n-1) * 2 / n % MOD先让n--,ans = C(2*n,…
N * N的方格,从左上到右下画一条线.一个机器人从左上走到右下,只能向右或向下走. 并要求只能在这条线的上面或下面走,不能穿越这条线,有多少种不同的走法? 由于方法数量可能很大,只需要输出Mod 10007的结果.   Input 输入一个数N(2 <= N <= 10^9). Output 输出走法的数量 Mod 10007. Input示例 4 Output示例 10————————————————————————————这题是裸的卡特兰数 不过因为mod比2*n小 所以要加上lucas…
M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10^9 + 7的结果. 收起   输入 第1行,2个数M,N,中间用空格隔开.(2 <= m,n <= 1000) 输出 输出走法的数量. 输入样例 2 3 输出样例 3动态规划代码: #include <iostream> #include <cstdio> #include <cstring> #define MAX 1000 #d…
链接:https://ac.nowcoder.com/acm/contest/368/A 题意: 在一个n*n的方格中,你只能斜着走. 你还有一次上下左右走的机会 给你一个起点(sx,sy),和终点(ex,ey),询问从起点到终点最少走多少步. 思路: 行到行,列到列,步数都是固定的. 直接比较哪个大就行. 代码: #include <bits/stdc++.h> using namespace std; typedef long long LL; int main() { LL a, sx,…
M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10^9 + 7的结果. Input 第1行,2个数M,N,中间用空格隔开.(2 <= m,n <= 1000) Output 输出走法的数量. Input示例 2 3 Output示例 3解:简单dp,注意空间复杂度的优化. #include <stdio.h> #define MOD ((int)1e9+7) ] = {}; int main() { int…
M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10^9 + 7的结果. 收起 输入 第1行,2个数M,N,中间用空格隔开.(2 <= m,n <= 1000) 输出 输出走法的数量. 输入样例 2 3 输出样例 3 思路:这道题也是较简单的,由于机器人只能向下或者向右走,所以在最后一步即右下时,它有两种途径,即从它左边或者上边到达的. 另dp[i][j]表示走到(i,j)点的路径数目,可以得到递推式:dp[i][j]=…
https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1118 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10^9 + 7的结果. Input 第1行,2个数M,N,中间用空格隔开.(2 <= m,n <= 1000) Output 输出走法的数量.…
M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10^9 + 7的结果.   Input 第1行,2个数M,N,中间用空格隔开.(2 <= m,n <= 1000000) Output 输出走法的数量 Mod 10^9 + 7. Input示例 2 3 Output示例 3 思路: 我们从左上走到右下 一共要往下走n-1次 往右走 m-1次 一共走了 n+m-2次但是不同的地方可以在向下走(n-1)次 或者向右走(m-1…
M * N的方格,一个机器人从左上走到右下,只能向右或向下走. 有多少种不同的走法? 注意:给定 M, N 是一个正整数. 示例 输入: 1行, 2个数M,N,中间用空格隔开.(2 <= m,n <= 1000) 输出: 输出走法的数量. 输入样例 2 3 输出样例 3 #解一 def solve(M: int, N: int) -> int: if M == 1 or N == 1: return 1 return solve(M-1, N) + solve(M, N-1) #解二 d…
点击查看代码 #include<iostream> using namespace std; int n, m, ans = 0; void dfs(int x, int y) { if (x == n && y == m) ans ++; else { if (y < m) dfs(x, y + 1); if (x < n) dfs(x + 1, y); } } int main() { cin >> n >> m; dfs(0, 0);…
题目实际上是求catalan数的,Catalan[n] = C(2*n,n) / (n+1) = C(2*n,n) % mod * inv[n+1],inv[n+1]为n+1的逆元,根据费马小定理,可以通过快速幂快速求出. 因为n的数据范围较大,所以要用到卢卡斯定理:若p为素数,那么C(m,n)%p = C(m/p,n/p) * C(m%p,n%p)  % p.从而我们可以递归的可以求出C(m,n),当n==0,返回1. 因为方格含有两个三角形,所以Catalan[n]*2 即是最终答案 #in…
链接:https://ac.nowcoder.com/acm/contest/330/B来源:牛客网 题目描述 精通程序设计的 Applese 又写了一个游戏. 在这个游戏中,它位于一个 n 行 m 列的方阵中的左上角(坐标为(0, 0),行的序号为0∼n−10∼n−1,列的序号为0∼m−10∼m−1). 现在它想不重复地走过所有格子(除了起点),最后回到左上角的一个方案. 每次只能往上下左右其中一个方向走一格. 输入描述: 仅一行两个整数 n 和 m,表示方阵的大小.保证大于1×11×1. 输…
解题关键: 1.此题用dp的方法可以看出,dp矩阵为杨辉三角,通过总结,可以得出 答案的解为$C_{n + m - 2}^{n - 1}$ 2.此题可用组合数学的思想考虑,总的步数一共有$n+m-2$步,在这所有的步数中,需要选择向下走的步数的位置,由此可得,答案的解为:$C_{n + m - 2}^{n - 1}$ 此题即可转化为大组合数取模问题: #include<bits/stdc++.h> using namespace std; typedef long long ll; ; ll…
首先建立矩阵,给每个格子编号,然后在4*4的格子中把能一步走到的格子置为1,然后乘n次即可,这里要用到矩阵快速幂 #include<iostream> #include<cstdio> using namespace std; const int mod=1e9+7; long long n,ans; struct qwe { long long a[5][5]; qwe operator * (qwe b) { qwe c; for(long long i=1;i<=4;i…