【Deep learning】NLP】的更多相关文章

http://www.tuicool.com/articles/EvaQJnJ http://cs224d.stanford.edu/syllabus.html…
Deep Learning 第一战: 完成:UFLDL教程 稀疏自编码器-Exercise:Sparse Autoencoder Code: 学习到的稀疏参数W1: 参考资料: UFLDL教程 稀疏自编码器 Autoencoders相关文章阅读: [3] Hinton, G. E., Osindero, S., & Teh, Y. (2006). A fast learning algorithm for deep belief nets [4] Hinton, G. E. and Salakh…
作者:Mingxuan Wang.李航,刘群 单位:华为.中科院 时间:2015 发表于:acl 2015 文章下载:http://pan.baidu.com/s/1bnBBVuJ 主要内容: 用deep learning设计了一种语言模型.可以依据之前"全部"的历史来预測当前词的条件概率.用语言模型迷惑度衡量.用机器翻译衡量,该模型都比baseline(5-gram.RNN.等)好 详细内容: 之前用deep learning在语言模型上的进展是:RNN和LSTM 參考的工具包: R…
这节课的题目是Deep learning,个人以为说的跟Deep learning比较浅,跟autoencoder和PCA这块内容比较紧密. 林介绍了deep learning近年来受到了很大的关注:deep NNet概念很早就有,只是受限于硬件的计算能力和参数学习方法. 近年来深度学习长足进步的原因有两个: 1)pre-training技术获得了发展 2)regularization的技术获得了发展 接下来,林开始介绍autoencoder的motivation. 每过一个隐层,可以看做是做了…
想自己动手写一个CNN很久了,论文和代码之间的差距有一个银河系那么大. 在实现两层的CNN之前,首先实现了UFLDL中与CNN有关的作业.然后参考它的代码搭建了一个一层的CNN.最后实现了一个两层的CNN,码代码花了一天,调试花了5天,我也是醉了.这里记录一下通过代码对CNN加深的理解. 首先,dataset是MNIST.这里层的概念是指convolution+pooling,有些地方会把convolution和pooling分别作为两层看待. 1.CNN的结构 这个两层CNN的结构如下: 图一…
2006年,机器学习泰斗.多伦多大学计算机系教授Geoffery Hinton在Science发表文章,提出基于深度信念网络(Deep Belief Networks, DBN)可使用非监督的逐层贪心训练算法,为训练深度神经网络带来了希望.如果说Hinton 2006年发表在<Science>杂志上的论文[1]只是在学术界掀起了对深度学习的研究热潮,那么近年来各大巨头公司争相跟进,将顶级人才从学术界争抢到工业界,则标志着深度学习真正进入了实用阶段,将对一系列产品和服务产生深远影响,成为它们背后…
官网 链接:CS231n: Convolutional Neural Networks for Visual Recognition Notes: 链接:http://cs231n.github.io/ 中文字幕视频 by 大数据文摘 链接:http://study.163.com/course/courseMain.htm?courseId=1003223001 课件中文翻译 by 杜克 链接:https://www.52ml.net/tags/cs231 课件英文视频及字幕等 by 爱可可-…
http://blog.csdn.net/Dark_Scope/article/details/47056361 http://blog.csdn.net/hongmaodaxia/article/details/41809341…
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/…
DA就是“Denoising Autoencoders”的缩写.继续给yusugomori做注释,边注释边学习.看了一些DA的材料,基本上都在前面“转载”了.学习中间总有个疑问:DA和RBM到底啥区别?(别笑,我不是“学院派”的看Deep Learning理论,如果“顺次”看下来,可能不会有这个问题),现在了解的差不多了,详情见:[deep learning学习笔记]Autoencoder.之后,又有个疑问,DA具体的权重更新公式是怎么推导出来的?我知道是BP算法,不过具体公示的推导.偏导数的求…
最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books  by Yoshua Bengio, Ian Goodfellow and Aaron Courville Neural Networks and Deep Learning42 by Michael Nielsen Deep Learning27 by Microsoft Research Deep Learning Tutorial23 by LISA lab, University…
Deep Learning for NLP 文章列举 原文链接:http://www.xperseverance.net/blogs/2013/07/2124/   大部分文章来自: http://www.socher.org/ http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial 包括从他们里面的论文里找到的related work   Word Embedding Learnig SENNA原始论文[ACL'07]Fas…
原文链接:http://www.xperseverance.net/blogs/2013/07/2124/   大部分文章来自: http://www.socher.org/ http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial 包括从他们里面的论文里找到的related work   Word Embedding Learnig SENNA原始论文[ACL'07]Fast Semantic Extraction Using…
机器学习及其基础概念简介 作者:白宁超 2016年12月23日21:24:51 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结合视频学习和书籍基础的笔记所得.本系列文章将采用理论结合实践方式编写.首先介绍机器学习和深度学习的范畴,然后介绍关于训练集.测试集等介绍.接着分别介绍机器学习常用算法,分别是监督学习之分类(决策树.临近取样.支持向量机.神经网络算法)监督学习之回归(线性回归.非线性回归)非监督学习(K-means聚…
K-近邻算法虹膜图片识别实战 作者:白宁超 2017年1月3日18:26:33 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结合视频学习和书籍基础的笔记所得.本系列文章将采用理论结合实践方式编写.首先介绍机器学习和深度学习的范畴,然后介绍关于训练集.测试集等介绍.接着分别介绍机器学习常用算法,分别是监督学习之分类(决策树.临近取样.支持向量机.神经网络算法)监督学习之回归(线性回归.非线性回归)非监督学习(K-means聚…
Python开发工具:Anaconda+Sublime 作者:白宁超 2016年12月23日21:24:51 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结合视频学习和书籍基础的笔记所得.本系列文章将采用理论结合实践方式编写.首先介绍机器学习和深度学习的范畴,然后介绍关于训练集.测试集等介绍.接着分别介绍机器学习常用算法,分别是监督学习之分类(决策树.临近取样.支持向量机.神经网络算法)监督学习之回归(线性回归.非线性回归…
决策树在商品购买能力预测案例中的算法实现 作者:白宁超 2016年12月24日22:05:42 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结合视频学习和书籍基础的笔记所得.本系列文章将采用理论结合实践方式编写.首先介绍机器学习和深度学习的范畴,然后介绍关于训练集.测试集等介绍.接着分别介绍机器学习常用算法,分别是监督学习之分类(决策树.临近取样.支持向量机.神经网络算法)监督学习之回归(线性回归.非线性回归)非监督学习(…
原文转载:http://licstar.net/archives/328 Deep Learning 算法已经在图像和音频领域取得了惊人的成果,但是在 NLP 领域中尚未见到如此激动人心的结果.关于这个原因,引一条我比较赞同的微博. @王威廉:Steve Renals算了一下icassp录取文章题目中包含deep learning的数量,发现有44篇,而naacl则有0篇.有一种说法是,语言(词.句子.篇章等)属于人类认知过程中产生的高层认知抽象实体,而语音和图像属于较为底层的原始输入信号,所以…
Deep Learning for Natural Language Processing (without Magic) http://nlp.stanford.edu/courses/NAACL2013/ http://nlp.stanford.edu/projects/DeepLearningInNaturalLanguageProcessing.shtml Deep Learning in NLP (一)词向量和语言模型 http://licstar.net/archives/328…
转自licstar,真心觉得不错,可惜自己有些东西没有看懂 这篇博客是我看了半年的论文后,自己对 Deep Learning 在 NLP 领域中应用的理解和总结,在此分享.其中必然有局限性,欢迎各种交流,随便拍. Deep Learning 算法已经在图像和音频领域取得了惊人的成果,但是在 NLP 领域中尚未见到如此激动人心的结果.关于这个原因,引一条我比较赞同的微博. @王威廉:Steve Renals算了一下icassp录取文章题目中包含deep learning的数量,发现有44篇,而na…
Deep Learning for NLP Deep Learning for NLP Lecture 2:Introduction to Teano enter link description here Neural Networks can be expressed as one long function of vector and matrix operations. (神经网络可以表示为一个向量和矩阵运算的长函数.) Common Frameworks(常用框架) C/C++ if…
Deep Learning for NLP The First Paper Proposed Bi-LSTM+CRF 我认为,第一篇提出 Bi-LSTM+CRF 架构的文章是: Huang Z, Xu W, Yu K, et al. Bidirectional LSTM-CRF Models for Sequence Tagging.[J]. arXiv: Computation and Language, 2015.…
主要内容: Spotify是个类似酷我音乐的音乐站点.做个性化音乐推荐和音乐消费.作者利用deep learning结合协同过滤来做音乐推荐. 详细内容: 1. 协同过滤 基本原理:某两个用户听的歌曲都差点儿相同,说明这两个用户听歌的兴趣.品味类似.某两个歌曲,被同一群人听,说明这两个歌曲风格类似. 缺点: (1)没有利用歌曲本身的特征(信息) (2)无法对"层级"的item进行处理,对于歌曲来说,这样的层级关系体如今:专辑-主打歌-副歌,上面,这几种因素并非同等重要的 (3)冷启动问…
发表于NIPS2010 workshop on deep learning的一篇文章,看得半懂. 主要内容: 是针对文本表示的一种方法.文本表示可以进一步应用在文本分类和信息检索上面.通常,一篇文章表示为V大小的一个向量,|V|是词表的大小.传统的方法,向量中每个值是tf/idf计算得到的权重.不过|V|比较大的时候,对于文本分类和信息检索来讲,时空复杂度都比较大.这时候需要对|V|进行降维.通常的方法是LDA系列的方法,将文章表示成若干个topic上面的分布.不过实验效果并不好.本文作者用de…
百度了半天yusugomori,也不知道他是谁.不过这位老兄写了deep learning的代码,包括RBM.逻辑回归.DBN.autoencoder等,实现语言包括c.c++.java.python等.是学习的好材料.代码下载地址:https://github.com/yusugomori/DeepLearning.不过这位老兄不喜欢写注释,而且这些模型的原理.公式什么的,不了解的话就看不懂代码.我从给他写注释开始,边看资料.边理解它的代码.边给他写上注释. 工具包中RBM的实现包含了两个文件…
这几个ppt都是在微博上看到的,是百度的一个员工整理的. <Deep Belief Nets>,31页的一个ppt 1. 相关背景 还是在说deep learning好啦,如特征表示云云.列了一些参考文献,关于deep learning训练的,还不错. 2. 基本概念 两种产生式神经网络:(1)sigmod belief network:(2)Boltzmann Machine 多个概率密度模型如何融合? (1)mixture:就是加权平均 (2)product:乘积 (3)compositi…
In this lesson, Andrew Trask, the author of Grokking Deep Learning, will walk you through using neural networks for sentiment analysis. In particular, you'll build a network that classifies movie reviews as positive or negative just based on their te…
Welcome to the Deep Learning Nanodegree Foundations Program! In this lesson, you'll meet your instructors, find out about the field of Deep Learning, and learn how to make the most of the resources Udacity provides. Program Structure Every week, you…
本文首发自公众号:RAIS,期待你的关注. 前言 本系列文章为 <Deep Learning> 读书笔记,可以参看原书一起阅读,效果更佳. 概率论 机器学习中,往往需要大量处理不确定量,或者是随机量,这与我们传统所需要解决掉问题是大不一样的,因此我们在机器学习中往往很难给出一个百分百的预测或者判断,基于此种原因,较大的可能性往往就是所要达到的目标,概率论有用武之地了. 概念 离散型 概率质量函数:是一个数值,概率,\(0\leq P(x)\leq 1\): 边缘概率分布:\(P(X=x)=\s…
0. 词向量是什么 自然语言理解的问题要转化为机器学习的问题,第一步肯定是要找一种方法把这些符号数学化. NLP 中最直观,也是到目前为止最常用的词表示方法是 One-hot Representation,这种方法把每个词表示为一个很长的向量.这个向量的维度是词表大小,其中绝大多数元素为 0,只有一个维度的值为 1,这个维度就代表了当前的词. 举个栗子, “话筒”表示为 [0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 ...] “麦克”表示为 [0 0 0 0 0 0 0 0 …