Roadmap Motivation of Boosting Diversity by Re-weighting Adaptive Boosting Algorithm Adaptive Boosting in Action Summary…
将分类器组合的过程中,将重点逐渐聚焦于那些被错分的样本点,这种做法背后的数学原因,就是这讲的内容. 在用bootstraping生成g的过程中,由于抽样对不同的g就生成了不同的u,接下来就是不断的调整u,使得Ein最小. g越不同,通过aggregation,越能得到更好的结果.通过调整u来得到不同的g.如果某个gt,在ut+1时表现的不好,那么gt或与gt很像的hypothesis就 可能不会被选到.因此,可通过调整ut+1来使g不同.那么如何定义g的表现不好呢?如果错误率与丢硬币没什么两样(…
原文地址:http://www.jianshu.com/p/9bf9e2add795 AdaBoost 问题描述 程序实现 # coding:utf-8 import math import numpy as np import matplotlib.pyplot as plt def ReadData(dataFile): with open(dataFile, 'r') as f: lines = f.readlines() data_list = [] for line in lines:…
上一讲主要利用不同模型计算出来的g.採用aggregation来实现更好的g.假设还没有做出来g.我们能够採用bootstrap的方法来做出一系列的"diversity"的data出来.然后训练出一系列的g.比方PLA来说,尽管模型一样,就是直线对二维平面的切割,模型都为直线,那么我们利用bootstrap来做出不同的数据,然后计算出不同的g,然后融合后就能够得到非常好的效果.或者也能够通过调整PLA的初始值来训练,得到一堆g,最后融合(parameter diversity,rand…
Roadmap Motivation of Boosting Diversity by Re-weighting Adaptive Boosting Algorithm Adaptive Boosting in Action Summary…
课程地址:https://class.coursera.org/ntumltwo-002/lecture 重要!重要!重要~ 一.Adaptive Boosting 的动机 通过组合多个弱分类器(hypothese),构建一个更强大的分类器(hypothese),从而达到"三个臭皮匠赛过诸葛亮"的效果. 例如实际中,可以通过简单的"横""竖"组成比较复杂的模型. 二.样本权重 AdaBoost元算法中有个很重要的概念叫样本权重u. 学习算法A使用…
本文主要基于台大林轩田老师的机器学习技法课程中关于使用融合(aggregation)方法获得更好性能的g的一个总结.包含从静态的融合方法blending(已经有了一堆的g,通过uniform:voting/average.non-uniform:linear/non-linear和condition的融合形式来获取更好地性能).动态融合方法learning(没有一堆的g set,而是通过online learning获取g,边学习g,变边进行融合,对照于blending中的uniform融合形式…
http://www.cnblogs.com/maybe2030/p/4585705.html 阅读目录 1 什么是随机森林? 2 随机森林的特点 3 随机森林的相关基础知识 4 随机森林的生成 5 袋外错误率(oob error) 6 随机森林工作原理解释的一个简单例子 7 随机森林的Python实现 8 参考内容 回到顶部 1 什么是随机森林? 作为新兴起的.高度灵活的一种机器学习算法,随机森林(Random Forest,简称RF)拥有广泛的应用前景,从市场营销到医疗保健保险,既可以用来做…
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习笔记,这次是第7章 - 利用AdaBoost元算法提高分类性能. 核心思想 在使用某个特定的算法是,有时会发现生成的算法\(f(x)\)的错误率比较高,只使用这个算法达不到要求. 这时\(f(x)\)就是一个弱算法. 在以前学习算法的过程中,我们认识到算法的参数很重要,所以把公式改写成这样: \[ f(x,arguments) \\ where \\ \qquad x \text{ : calculated…
原文地址: https://www.cnblogs.com/steven-yang/p/5686473.html ----------------------------------------------------------------------------------------------------------------- 前言 最近在看Peter Harrington写的“机器学习实战”,这是我的学习笔记,这次是第7章 - 利用AdaBoost元算法提高分类性能. 这个思路称之…