0 简述 Transformer最大的问题:在语言建模时的设置受到固定长度上下文的限制. 本文提出的Transformer-XL,使学习不再仅仅依赖于定长,且不破坏时间的相关性. Transformer-XL包含segment-level 循环机制和positional编码框架.不仅可以捕捉长时依赖,还可以解决上下文断片问题 fragmentation problem.可以学到比RNNs长80%的依赖,比vanilla Transformers长450%.在长短序列上都取得了更好的结果.与van…
论文题目:<Structural Deep Network Embedding>发表时间:  KDD 2016 论文作者:  Aditya Grover;Aditya Grover; Jure Leskovec论文地址:  DownloadGithub:      Go1.Go2 ABSTRACT Motivation 由于底层网络结构复杂,Shallow model 无法捕捉高度非线性的网络结构,导致网络表示次优. 因此,如何找到一种能够有效捕捉高度非线性网络结构并保留全局和局部结构的方法是…
本文尽量贴合BERT的原论文,但考虑到要易于理解,所以并非逐句翻译,而是根据笔者的个人理解进行翻译,其中有一些论文没有解释清楚或者笔者未能深入理解的地方,都有放出原文,如有不当之处,请各位多多包含,并希望得到指导和纠正. 论文标题 Bert:Bidirectional Encoder Representations from Transformers 一种从Transformers模型得来的双向编码表征模型. 论文地址 https://arxiv.org/pdf/1810.04805 Abstr…
论文信息 论文标题:Self-supervised Graph Neural Networks without explicit negative sampling论文作者:Zekarias T. Kefato, Sarunas Girdzijauskas论文来源:2021, WWW论文地址:download 论文代码:download 1 介绍 本文核心贡献: 使用孪生网络隐式实现对比学习: 本文提出四种特征增强方式(FA): 2 相关工作 Graph Neural Networks GCN…
论文信息 论文标题:How Powerful are K-hop Message Passing Graph Neural Networks论文作者:Jiarui Feng, Yixin Chen, Fuhai Li, Anindya Sarkar, Muhan Zhang论文来源:2022,arXiv论文地址:download 论文代码:download 1 Introduction 本文工作: 1)正式区分了 K-hop 邻居的两个不同的内核,它们在以前的工作中经常被滥用.一种是基于图扩散(…
itemKNN发展史----推荐系统的三篇重要的论文解读 本文用到的符号标识 1.Item-based CF 基本过程: 计算相似度矩阵 Cosine相似度 皮尔逊相似系数 参数聚合进行推荐 根据用户项目交互矩阵 \(A\) 计算相似度矩阵 \(W\): 这样,用户对整个项目列表的偏好值可以如下计算: \[{ {\tilde a_i}^T}={ a_i^T} \times W\] 例如,对于 j 号物品,用户的偏好值如此计算: \[{ {\tilde a_{(u,j)}}}=\sum_{i\in…
0. Overview What is language models? A time series prediction problem. It assigns a probility to a sequence of words,and the total prob of all the sequence equal one. Many Natural Language Processing can be structured as (conditional) language modell…
首发于深度学习那些事 已关注写文章   扔掉anchor!真正的CenterNet——Objects as Points论文解读 OLDPAN 不明觉厉的人工智障程序员 ​关注他 JustDoIT 等 188 人赞同了该文章 前言 anchor-free目标检测属于anchor-free系列的目标检测,相比于CornerNet做出了改进,使得检测速度和精度相比于one-stage和two-stage的框架都有不小的提高,尤其是与YOLOv3作比较,在相同速度的条件下,CenterNet的精度比Y…
CVPR2020论文解读:CNN合成的图片鉴别 <CNN-generated images are surprisingly easy to spot... for now> 论文链接:https://arxiv.org/abs/1912.11035 代码链接:https://peterwang512.github.io/CNNDetection/ 该文章被CVPR2020录用,Arxiv公开于2019年12月,作者来自 UC Berkeley 和 Adobe Research. CNN 生成…
图像分类:CVPR2020论文解读 Towards Robust Image Classification Using Sequential Attention Models 论文链接:https://arxiv.org/pdf/1912.02184.pdf 摘要 在这篇文章中,我们提出用一个受人类感知启发的注意力模型来扩充一个现代的神经网络结构.具体地说,我们对一个神经模型进行了逆向训练和分析,该模型包含了一个受人启发的视觉注意成分,由一个自上而下的循环顺序过程引导.我们的实验评估揭示了关于这个…