Bell Time Limit:3000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Status Practice HDU 4767   Description What? MMM is learning Combinatorics!? Looks like she is playing with the bell sequence now: bell[n] = number of ways to pa…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4767 题意:给出n.求n有多少种划分集合的方式,即bell(n) 思路: #include <iostream>#include <cstdio>#include <string.h>#include <algorithm>#include <cmath>#include <vector>#include <queue>#in…
@维基百科 在组合数学,Stirling数可指两类数,都是由18世纪数学家James Stirling提出的. 第一类 s(4,2)=11 第一类Stirling数是有正负的,其绝对值是个元素的项目分作个环排列的方法数目.常用的表示方法有. 换个较生活化的说法,就是有个人分成组,每组内再按特定顺序围圈的分组方法的数目.例如: {A,B},{C,D} {A,C},{B,D} {A,D},{B,C} {A},{B,C,D} {A},{B,D,C} {B},{A,C,D} {B},{A,D,C} {C…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4767 题意:求集合{1, 2, 3, ..., n}有多少种划分情况bell[n],最后结果bell[n] mod 95041567. 分析:首先了解三个概念:贝尔数   第二类斯特灵数   中国剩余定理 贝尔数是指基数为n的集合的划分方法的数目. 贝尔数适合递推公式: 每个贝尔数都是"第二类Stirling数"的和 贝尔数满足两个公式:(p为质数)             1) B[n+…
组合数学的实质还是DP,但是从通式角度处理的话有利于FFT等的实现. 首先推荐$Candy?$的球划分问题集合: http://www.cnblogs.com/candy99/p/6400735.html 以下部分节选自 http://blog.csdn.net/sr_19930829/article/details/40888349 第一类Stirling数 定理:第一类Stirling数$s(p,k)$计数的是把p个对象排成k个非空循环排列的方法数. 证明:把上述定理叙述中的循环排列叫做圆圈…
前面说到了Catalan数,现在来了一个Bell数和Stirling数.什么是Bell数,什么是Stirling数呢?两者的关系如何,有用于解决什么算法问题呢? Bell数是以Bell这个人命名的,组合数学中的一组整数数列:B0=1,B1=1,B2=2,B3=5,B4=15,B5=52,B6=203.... Bn是基数为n的集合的划分方法数目.集合S的一个划分是定义为S的两两不相交的非空子集的族,他们的并是S.例如B3=5,集合S={1,2,3}的5中划分就是 {{1},{2},{3}} {{1…
一.第二类Stirling数 定理:第二类Stirling数S(p,k)计数的是把p元素集合划分到k个不可区分的盒子里且没有空盒子的划分个数. 证明:元素在哪些盒子并不重要,唯一重要的是各个盒子里装的是什么,而不管哪个盒子装了什么. 递推公式有:S(p,p)=1 (p>=0)         S(p,0)=0  (p>=1)         S(p,k)=k*S(p-1,k)+S(p-1,k-1)   (1<=k<=p-1) .考虑将前p个正整数,1,2,.....p的集合作为要被…
贝尔数   贝尔数以埃里克·坦普尔·贝尔(Eric Temple Bell)为名,是组合数学中的一组整数数列,开首是(OEIS的A000110数列):   Bell Number Bn是基数为n的集合的划分方法的数目.集合S的一个划分是定义为S的两两不相交的非空子集的族,它们的并是S.例如B3 = 5因为3个元素的集合{a, b, c}有5种不同的划分方法: {{a}, {b}, {c}} {{a}, {b, c}} {{b}, {a, c}} {{c}, {a, b}} {{a, b, c}}…
题目描述 n个人在w*h的监狱里面想要逃跑,已知他们的同伙在坐标(bi,h)接应他们,他们现在被关在(ai,1)现在他们必须要到同伙那里才有逃出去的机会,这n个人又很蠢只会从(x,y)->(x+1,y),(x,y+1)并且这他们走过的路径不能相交如果相交第一个经过后就会有第二个人经过时候就会有一名狱警在那等他,第二个人就会被抓,假设他们不会同时踩到某个格子,那么他们的逃跑路线有多少不同的方案数.如果两个方案不同那么存在一个人踩的格子至少有一个是另外一个方案的没踩过 输入 第一行一个t(t<=2…
第二类斯特林数 第二类Stirling数:S2(p, k) 1.组合意义:第二类Stirling数计数的是把p个互异元素划分为k个非空集合的方法数 2.递推公式: S2(0, 0) = 1 S2(p, 0) = 0 ( p >= 1)  显然p >= 1时这种方法不存在 S2(p, p) = 1  显然这时每个元素看为一个集合 S2(p, k) = k * S2(p - 1, k) + S2(p - 1, k - 1) 考虑将1,2,3,...,p划分为k个非空集合,考虑p ⑴将p单独划分为一…