我们知道,如果想要在Yarn上运行MapReduce作业,仅需实现一个ApplicationMaster组件即可,而MRAppMaster正是MapReduce在Yarn上ApplicationMaster的实现,由其控制MR作业在Yarn上的执行.如此,随之而来的一个问题就是,MRAppMaster是如何控制MapReduce作业在Yarn上运行的,换句话说,MRAppMaster上MapReduce作业处理总流程是什么?这就是本文要研究的重点. 通过MRAppMaster类的定义我们就能看出…
本文继<Yarn源码分析之MRAppMaster上MapReduce作业处理总流程(一)>,接着讲述MapReduce作业在MRAppMaster上处理总流程,继上篇讲到作业初始化之后的作业启动,关于作业初始化主体流程的详细介绍,请参见<Yarn源码分析之MRAppMaster上MapReduce作业初始化解析>一文. (三)启动 作业的启动是通过MRAppMaster的startJobs()方法实现的,其代码如下: /** * This can be overridden to …
基于作业大小因素,MRAppMaster提供了三种作业运行方式:本地Local模式.Uber模式.Non-Uber模式.其中, 1.本地Local模式:通常用于调试: 2.Uber模式:为降低小作业延迟而设计的一种模式,所有任务,不管是Map Task,还是Reduce Task,均在同一个Container中顺序执行,这个Container其实也是MRAppMaster所在Container: 3.Non-Uber模式:对于运行时间较长的大作业,先为Map Task申请资源,当Map Task…
v2版本的MapReduce作业中,作业JOB_SETUP_COMPLETED事件的发生,即作业SETUP阶段完成事件,会触发作业由SETUP状态转换到RUNNING状态,而作业状态转换中涉及作业信息的处理,是由SetupCompletedTransition来完成的,它主要做了四件事: 1.通过设置作业Job的成员变量setupProgress为1,标记作业setup已完成: 2.调度作业Job的Map Task: 3.调度作业的JobReduce Task: 4.如果没有task了,则生成J…
在MRAppMaster中,当MapReduce作业初始化时,它会通过作业状态机JobImpl中InitTransition的transition()方法,进行MapReduce作业初始化相关操作,而这其中就包括: 1.调用createSplits()方法,创建分片,并获取任务分片元数据信息TaskSplitMetaInfo数组taskSplitMetaInfo: 2.确定Map Task数目numMapTasks:分片元数据信息数组的长度,即有多少分片就有多少numMapTasks: 3.确定…
转自:http://blog.csdn.net/androidlushangderen/article/details/48128955 YARN学习系列:http://blog.csdn.net/Androidlushangderen/article/category/5780183 前言 在之前两周主要学了HDFS中的一些模块知识,其中的许多都或多或少有我们借鉴学习的地方,现在将目光转向另外一个块,被誉为MRv2,就是yarn,在Yarn中,解决了MR中JobTracker单点的问题,将此拆…
AsyncDispatcher是Yarn中事件异步分发器,它是ResourceManager中的一个基于阻塞队列的分发或者调度事件的组件,其在一个特定的单线程中分派事件,交给AsyncDispatcher中之前注册的针对该事件所属事件类型的事件处理器EventHandler来处理.每个事件类型类可能会有多个处理渠道,即多个事件处理器,可以使用一个线程池调度事件.在Yarn的主节点ResourceManager中,就有一个Dispatcher类型的成员变量rmDispatcher,定义如下: pr…
在Hadoop中,调度框架YARN(Yet Another Resource Negotiater)是基于事件的,调度的是MapReduce的Application.Application有一系列的状态变化(NEW/NEW_SAVING/SUBMITTED/ACCEPTED/RUNNING/FINISHED/FAILED/KILLED ),即基于状态机的变换(设计模式State Pattern),状态之间的变换通过事件触发. ①对AsyncDispatcher的介绍 核心类AsyncDispat…
mapreduce.job.reduce.slowstart.completedmaps是MapReduce编程模型中的一个参数,这个参数的含义是,当Map Task完成的比例达到该值后才会为Reduce Task申请资源,默认是0.05,其在接口MRJobConfig中表示如下: // 当Map Task完成的比例达到该值后才会为Reduce Task申请资源,默认是0.05 public static final String COMPLETED_MAPS_FOR_REDUCE_SLOWST…
1.概述 在<Hadoop2源码分析-YARN RPC 示例介绍>一文当中,给大家介绍了YARN 的 RPC 机制,以及相关代码的演示,今天我们继续去学习 YARN 的服务库和事件库,分享目录如下所示: 服务库和事件库介绍 使用示例 截图预览 下面开始今天的内容分享. 2.服务库和事件库介绍 2.1服务库 YARN对于生命周期较长的对象使用服务的对象模型进行管理,主要特点如下: 用于被服务化的对象包含4个状态,他们分别是:被创建.已初始化.已启动和已停止.源代码地址在 org.apache.h…
MapReduce作业提交时连接集群是通过Job的connect()方法实现的,它实际上是构造集群Cluster实例cluster,代码如下: private synchronized void connect() throws IOException, InterruptedException, ClassNotFoundException { // 如果cluster为null,构造Cluster实例cluster, // Cluster为连接MapReduce集群的一种工具,提供了一种获取…
YARN DistributedShell源码分析与修改 YARN版本:2.6.0 转载请注明出处:http://www.cnblogs.com/BYRans/ 1 概述 2 YARN DistributedShell不能满足当前需求 2.1 功能需求 2.2 YARN DistributedShell对需求的支持情况 2.3 需要对YARN DistributedShell进行的修改 3 YARN DistributedShell源码获取 4 YARN DistributedShell源码分析…
1.概述 之前在<Hadoop2源码分析-RPC探索实战>一文当中介绍了Hadoop的RPC机制,今天给大家分享关于YARN的RPC的机制.下面是今天的分享目录: YARN的RPC介绍 YARN的RPC示例 截图预览 下面开始今天的内容分享. 2.YARN的RPC介绍 我们知道在Hadoop的RPC当中,其主要由RPC,Client及Server这三个大类组成,分别实现对外提供编程接口.客户端实现及服务端实现.如下图所示: 图中是Hadoop的RPC的一个类的关系图,大家可以到<Hado…
工作中发现在oozie中使用sqoop与在shell中直接调度sqoop性能上有很大的差异.为了更深入的探索其中的缘由,开始了oozie的源码分析之路.今天第一天阅读源码,由于没有编译成功,不能运行测试用例,直接使用sublime肉眼阅读,还是挺费劲的. 虽然流程还不是顺畅,但是大体上的内容还算是了解了. 我这里使用的是oozie4.2的版本,之前稍微看过4.3版本的,源码上还是有一定的差异的. 看上面的图,大致理解oozie的过程是: oozie cli提交任务 oozie server创建一…
<深入理解Spark:核心思想与源码分析>一书前言的内容请看链接<深入理解SPARK:核心思想与源码分析>一书正式出版上市 <深入理解Spark:核心思想与源码分析>一书第一章的内容请看链接<第1章 环境准备> 本文主要展示本书的第2章内容: Spark设计理念与基本架构 “若夫乘天地之正,而御六气之辩,以游无穷者,彼且恶乎待哉?” ——<庄子·逍遥游> n  本章导读: 上一章,介绍了Spark环境的搭建,为方便读者学习Spark做好准备.本章…
1.概述 前面我们已经对Hadoop有了一个初步认识,接下来我们开始学习Hadoop的一些核心的功能,其中包含mapreduce,fs,hdfs,ipc,io,yarn,今天为大家分享的是mapreduce部分,其内容目录如下所示: MapReduce V1 MapReduce V2 MR V1和MR V2的区别 MR V2的重构思路 本篇文章的源码是基于hadoop-2.6.0-src.tar.gz来完成的.代码下载地址,请参考<Hadoop2源码分析-准备篇>. 2.MapReduce V…
原文链接:Spark源码分析:多种部署方式之间的区别与联系(1) 从官方的文档我们可以知道,Spark的部署方式有很多种:local.Standalone.Mesos.YARN.....不同部署方式的后台处理进程是不一样的,但是如果我们从代码的角度来看,其实流程都差不多. 从代码中,我们可以得知其实Spark的部署方式其实比官方文档中介绍的还要多,这里我来列举一下: 1.local:这种方式是在本地启动一个线程来运行作业: 2.local[N]:也是本地模式,但是启动了N个线程: 3.local…
JobSubmitter,顾名思义,它是MapReduce中作业提交者,而实际上JobSubmitter除了构造方法外,对外提供的唯一一个非private成员变量或方法就是submitJobInternal()方法,它是提交Job的内部方法,实现了提交Job的所有业务逻辑.本文,我们将深入研究MapReduce中用于提交Job的组件JobSubmitter. 首先,我们先看下JobSubmitter的类成员变量,如下: // 文件系统FileSystem实例 private FileSystem…
MapReduce之提交job源码分析 job 提交流程源码详解 //runner 类中提交job waitForCompletion() submit(); // 1 建立连接 connect(); // 1)创建提交 job 的代理 new Cluster(getConfiguration()); // (1)判断是本地 yarn 还是远程 initialize(jobTrackAddr, conf); // 2 提交 job submitter.submitJobInternal(Job.…
引言 在上两篇文章 spark 源码分析之十九 -- DAG的生成和Stage的划分 和 spark 源码分析之二十 -- Stage的提交 中剖析了Spark的DAG的生成,Stage的划分以及Stage转换为TaskSet后的提交. 如下图,我们在前两篇文章中剖析了DAG的构建,Stage的划分以及Stage转换为TaskSet后的提交,本篇文章主要剖析TaskSet被TaskScheduler提交之后的Task的整个执行流程,关于具体Task是如何执行的两种stage对应的Task的执行有…
DolphinScheduler源码分析 本博客是基于1.2.0版本进行分析,与最新版本的实现有一些出入,还请读者辩证的看待本源码分析.具体细节可能描述的不是很准确,仅供参考 源码版本 1.2.0 技术框架 所有模块均采用比较流行的SprintBoot框架 架构图 重要概念 流程定义 在DolphinScheduler中,作业的DAG被命名为“流程定义”. 挺不可思议的. 流程实例 流程实例是流程定义的实例化,可以通过手动启动或定时调度生成,流程定义每运行一次,产生一个流程实例.流程实例由Mas…
第一章.spark源码分析之RDD四种依赖关系 一.RDD四种依赖关系 RDD四种依赖关系,分别是 ShuffleDependency.PrunDependency.RangeDependency和OneToOneDependency四种依赖关系.如下图所示:org.apache.spark.Dependency有两个一级子类,分别是 ShuffleDependency 和 NarrowDependency.其中,NarrowDependency 是一个抽象类,它有三个实现类,分别是OneToO…
Duilib界面库是一款由杭州月牙儿网络技术有限公司开发的界面开源库,以viksoe项目下的UiLib库的基础上开发(此后也将对UiLib库进行源码分析):通过XML布局界面,将用户界面和处理逻辑彻底分离,极大地提高用户界面的开发效率.一般常用于开发小型项目Windows桌面客户端软件:其子窗口不以窗口句柄的形式创建,只是逻辑上的窗口,绘制在父窗口之上.目前开源协议以BSD发布,可使用于商业应用,好了,其他更为详细的介绍,请查阅其官网或百度. 源码获取: 目前duilib不在被维护,基本上网络中…
一.首先抛出两个问题 问题一:在angular中我们绑定数据最基本的方式是用两个大括号将$scope的变量包裹起来,那么如果想将大括号换成其他什么符号,比如换成[{与}],可不可以呢,如果可以在哪里配置呢? 问题二:绑定的数据是如何被解析的呢?我们通过对$parse的分析,应该猜到绑定到模版的表达式最终会被传给$parse服务来处理,那么是谁将表达式从html字符串中给读取出来的呢? 二.$interpolate的功能 $interpolate是一个angular的内部服务,专门给$compil…
自己牺牲了7个月的周末和下班空闲时间,通过研究Spark源码和原理,总结整理的<深入理解Spark:核心思想与源码分析>一书现在已经正式出版上市,目前亚马逊.京东.当当.天猫等网站均有销售,欢迎感兴趣的同学购买.我开始研究源码时的Spark版本是1.2.0,经过7个多月的研究和出版社近4个月的流程,Spark自身的版本迭代也很快,如今最新已经是1.6.0.目前市面上另外2本源码研究的Spark书籍的版本分别是0.9.0版本和1.2.0版本,看来这些书的作者都与我一样,遇到了这种问题.由于研究和…
自己牺牲了7个月的周末和下班空闲时间,通过研究Spark源码和原理,总结整理的<深入理解Spark:核心思想与源码分析>一书现在已经正式出版上市,目前亚马逊.京东.当当.天猫等网站均有销售,欢迎感兴趣的同学购买.我开始研究源码时的Spark版本是1.2.0,经过7个多月的研究和出版社近4个月的流程,Spark自身的版本迭代也很快,如今最新已经是1.6.0.目前市面上另外2本源码研究的Spark书籍的版本分别是0.9.0版本和1.2.0版本,看来这些书的作者都与我一样,遇到了这种问题.由于研究和…
自己牺牲了7个月的周末和下班空闲时间,通过研究Spark源码和原理,总结整理的<深入理解Spark:核心思想与源码分析>一书现在已经正式出版上市,目前亚马逊.京东.当当.天猫等网站均有销售,欢迎感兴趣的同学购买.我开始研究源码时的Spark版本是1.2.0,经过7个多月的研究和出版社近4个月的流程,Spark自身的版本迭代也很快,如今最新已经是1.6.0.目前市面上另外2本源码研究的Spark书籍的版本分别是0.9.0版本和1.2.0版本,看来这些书的作者都与我一样,遇到了这种问题.由于研究和…
从上一章<Robotium源码分析之Instrumentation进阶>中我们了解到了Robotium所基于的Instrumentation的一些进阶基础,比如它注入事件的原理等,但Robotium作为一个测试框架,其功能远不止于只是方便我们注入事件,其应该还包含其他高级的功能,参照我们前面其他框架如MonkeyRunner,UiAutomator和Appium的源码分析,我们知道一个移动平台自动化测试框架的基本功能除了事件注入外起码还应该有控件获取的功能.所以,这篇文章我们主要是围绕Robo…
先再说明一下,我本次分析的memcached版本是1.4.20,有些旧的版本关于内存管理的机制和数据结构与1.4.20有一定的差异(本文中会提到). 一)模型分析在开始解剖memcached关于内存管理的源代码之前,先宏观上分析一下memcached内存管理的模型是怎样子的: 提个建议,我觉得memcached内存管理的模型与我们平时做作业的作业本“画格子给我们往格子里面写字”的逻辑很像,一本本作业本就是我们的内存空间,而我们往里写的字就是我们要存下来的数据,所以分析的时候可以想像一下用方格作业…
上篇Hadoop之HDFS原理及文件上传下载源码分析(上)楼主主要介绍了hdfs原理及FileSystem的初始化源码解析, Client如何与NameNode建立RPC通信.本篇将继续介绍hdfs文件上传.下载源解析. 文件上传 先上文件上传的方法调用过程时序图: 其主要执行过程: FileSystem初始化,Client拿到NameNodeRpcServer代理对象,建立与NameNode的RPC通信(楼主上篇已经介绍过了) 调用FileSystem的create()方法,由于实现类为Dis…