洛谷P4219 [BJOI2014]大融合(LCT)】的更多相关文章

P4219 [BJOI2014]大融合 题目描述 小强要在\(N\)个孤立的星球上建立起一套通信系统.这套通信系统就是连接\(N\)个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是它所在的当前能够 联通的树上路过它的简单路径的数量. 现在,你的任务就是随着边的添加,动态的回答小强对于某些边的负载的 询问. 输入输出格式 输入格式: 第一行包含两个整数 \(N, Q\),表示星球的数量和操作的数量.星球从 \(1\) 开始编号. 接下来的 \(Q\) 行,每行是如下两种…
Portal Description 初始有\(n(n\leq10^5)\)个孤立的点,进行\(Q(Q\leq10^5)\)次操作: 连接边\((u,v)\),保证\(u,v\)不连通. 询问有多少条简单路径经过边\((u,v)\). Solution 加边用lct,询问结果相当于\(p\)为根时的\((siz[p]-siz[q])\times siz[q]\). 那么如何用lct维护子树大小呢?维护\(isiz[p]\)表示\(p\)在lct上的虚子树大小,\(siz[p]\)表示\(isiz…
LCT维护子树信息的思路总结与其它问题详见我的LCT总结 思路分析 动态连边,LCT题目跑不了了.然而这题又有点奇特的地方. 我们分析一下,查询操作就是要让我们求出砍断这条边后,x和y各自子树大小的乘积. 掌握了LCT如何维护虚子树信息和后,做法就很清晰了.split(x,y)后,输出x的虚子树和+1与y的虚子树和+1的乘积:或者,(以y为根)输出x的子树总和与y的子树总和减去x的子树总和的乘积. 代码如下(这次我试着写了一个单旋"Spaly",好像常数还小不少......) #inc…
LCT维护子树信息的思路总结与其它问题详见我的LCT总结 思路分析 动态连边,LCT题目跑不了了.然而这题又有点奇特的地方. 我们分析一下,查询操作就是要让我们求出砍断这条边后,x和y各自子树大小的乘积. 掌握了LCT如何维护虚子树信息和后,做法就很清晰了.split(x,y)后,输出x的虚子树和+1与y的虚子树和+1的乘积:或者,(以y为根)输出x的子树总和与y的子树总和减去x的子树总和的乘积. 代码如下(这次我试着写了一个单旋"Spaly",好像常数还小不少......) #inc…
查询,就相当于先删去这条边,然后查询边的两个端点所在连通块大小,乘起来得到答案,然后再把边加回去 可以用线段树分治做 #pragma GCC optimize("Ofast") #include<cstdio> #include<algorithm> #include<cstring> #include<vector> #include<map> using namespace std; #define fi first #d…
QWQ 这个题目是LCT维护子树信息的经典应用 根据题目信息来看,对于一个这条边的两个端点各自的\(size\)乘起来,不过这个应该算呢? 我们可以考虑在LCT上多维护一个\(xv[i]\)表示\(i\)的虚子树的子树和,然后维护\(sum[i]\)表示\(i\)的虚+实子树之和. 那么对于一个点\(x\),他在原树上的字数大小就应该是$$size = xv[x]+sum[ch[x][1]]+1$$ 这是个经典套路! 对于这个题来说,我们可以通过\(split(x,y)\),然后\(ans\)就…
\(\color{#0066ff}{ 题目描述 }\) 小强要在\(N\)个孤立的星球上建立起一套通信系统.这套通信系统就是连接\(N\)个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是它所在的当前能够 联通的树上路过它的简单路径的数量. 例如,在上图中,现在一共有了\(5\)条边.其中,\((3,8)\)这条边的负载是\(6\),因 为有六条简单路径\(2-3-8\),\(2-3-8-7\),\(3-8\),\(3-8-7\),\(4-3-8\),\(4-3-8-7…
P4219 [BJOI2014]大融合 对于每个询问$(u,v)$所求的是 ($u$的虚边子树大小+1)*($v$的虚边子树大小+1) 于是我们再开个$si[i]$数组表示$i$的虚边子树大小,维护一下就好辣 #include<iostream> #include<cstdio> #include<cstring> using namespace std; inline void Swap(int &a,int &b){a^=b^=a^=b;} void…
[BZOJ4530][Bjoi2014]大融合 试题描述 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是它所在的当前能够 联通的树上路过它的简单路径的数量. 例如,在上图中,现在一共有了5条边.其中,(3,8)这条边的负载是6,因 为有六条简单路径2-3-8,2-3-8-7,3-8,3-8-7,4-3-8,4-3-8-7路过了(3,8). 现在,你的任务就是随着边的添加,动态的回答小强对于某些边的负载…
题目链接 BZOJ 洛谷 详见这 很明显题目是要求去掉一条边后两边子树sz[]的乘积. LCT维护的是链的信息,那么子树呢? 我们用s_i[x]来记录轻边连向x的子树的和(记作虚儿子),那么sum[x]更新时就是sum[lson]+sum[rson]+val[x]+s_i[x]. 现在需要s_i[x],考虑什么时候会影响它. Splay()影响的只是节点在辅助树Splay中的相对位置,并不会对树中的信息产生影响. Access()需要更改右儿子,即加上一个虚儿子加上一个实儿子,对应更新即可,如果…
题目链接 维护子树信息向来不是\(LCT\)所擅长的,所以我没搞懂qwq 权当背背模板吧.Flash巨佬的blog里面写了虽然我没看懂. #include <cstdio> #define R register int #define I inline void #define lc c[x][0] #define rc c[x][1] const int MAXN = 300010; inline int read(){ int s = 0, w = 1; char ch = getchar…
传送门 刷了那么久水题之后终于有一题可以来写写博客了. 但是这题太神仙了我还没完全弄懂-- upd:写完博客之后似乎懂了. 思路 首先很容易想到\(O(n^2\log n)\)乘上\(O(\frac{n}{\log n})\)的巨大常数的暴力做法(雾 然后可以发现这题支持把询问抽离出来最后做,那么我们可以先只关注修改操作. 可以发现一个点在\([l,r]\)的树上连上去和在所有树上都连上去其实没有太大区别,只是修改生长节点时要判一下是否存在,其他时候其实可以每一棵树上都连一个,因为不存在的点并不…
题目描述 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是它所在的当前能够联通的树上路过它的简单路径的数量. 例如,在上图中,现在一共有了5条边.其中,(3,8)这条边的负载是6,因为有六条简单路径2-3-8,2-3-8-7,3-8,3-8-7,4-3-8,4-3-8-7路过了(3,8). 现在,你的任务就是随着边的添加,动态的回答小强对于某些边的负载的询问. 输入 第一行包含两个整数N,Q,表示星球的…
传送门 题意:写一个数据结构,支持图上连边(保证图是森林)和询问一条边两端的连通块大小的乘积.$\text{点数.询问数} \leq 10^5$ 图上连边,$LCT$跑不掉 支持子树$size$有点麻烦.我们需要虚子树的$size$和(实子树的可以直接$pushup$),那么我们对于每一个点就去维护其虚子树的$size$和,那么每一个点的子树和就是可以维护的了.可以知道只有$link$和$access$操作会修改虚子树和(其他都在实链上进行操作),稍微加一点东西就行了.相对来说还是比较裸. 注意…
题目描述 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是它所在的当前能够 联通的树上路过它的简单路径的数量. 例如,在上图中,现在一共有了5条边.其中,(3,8)这条边的负载是6,因 为有六条简单路径2-3-8,2-3-8-7,3-8,3-8-7,4-3-8,4-3-8-7路过了(3,8). 现在,你的任务就是随着边的添加,动态的回答小强对于某些边的负载的 询问. 输入 第一行包含两个整数N,Q,表示…
题面 luogu bzoj是权限题.. 题解 \(LCT\)维护子树信息 因为\(LCT\)中有一些虚子树,\(splay\)维护不了. 所以要新开一个数组来记录 然后注意\(link\)时 是先\(split(x,y)\) 因为一般的\(link\)是先\(makeroot(x)\) 再\(fa[x] = y\) 然而,如果\(y\)之上还有节点,就无法实时更新 想想,\(split(x,y)\)是怎么操作的 makeroot(x); access(y); splay(y); 这样\(y\)之…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4530 LCT维护子树 siz .设 sm[ ] 表示轻儿子的 siz 和+1(1是自己的siz),siz[ ] 表示 splay 里 ( 两个儿子的 siz[ ] ) + sm[ cr ] .在 access 里随便维护一下就好了. 一开始写的 siz[ ]  是 splay 里右儿子的 siz[ ] + sm[ cr ] ,但打 rev[ ]  的时候难以维护,所以弃了. 注意要先让一个…
Description 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是它所在的当前能够 联通的树上路过它的简单路径的数量. 例如,在上图中,现在一共有了5条边.其中,(3,8)这条边的负载是6,因 为有六条简单路径2-3-8,2-3-8-7,3-8,3-8-7,4-3-8,4-3-8-7路过了(3,8). 现在,你的任务就是随着边的添加,动态的回答小强对于某些边的负载的 询问. Input 第一行包含…
传送门 动态维护森林 显然考虑 $LCT$ 但是发现询问求的是子树大小,比较不好搞 维护 $sum[x]$ 表示节点 $x$ 的子树大小,$si[x]$ 表示 $x$ 的子树中虚儿子的子树大小和 那么 $pushup$ 可以这样写: inline ]]+sum[c[x][]]+si[x]+; } 考虑什么时候 $si$ 会变 首先对于 $rotate,splay$ 因为都是对一条实链搞,所以对虚边没影响 然后考虑 $access$ ,发现边的虚实有改变 原本 $x$ 的右儿子变成另一个节点,那么…
Code: #include <cstdio> #include <algorithm> #include <cstring> #include <string> using namespace std; void setIO(string a){freopen((a+".in").c_str(),"r",stdin);} #define maxn 100009 #define ll long long int n,q…
题解:原来LCT也能维护子树信息,我太Naive了 用LCT维护当前子树节点个数 具体做法维护siz[x]=当前Splay子树和指向当前Splay子树的虚边所代表的节点个数 auxsiz[x]=指向x节点的虚边代表的节点个数 Link的时候x,y都要makeroot一下(针对我的写法) 然后就在LCT的基础上维护auxsiz即可 #include<iostream> #include<cstdio> #include<cstring> using namespace s…
早上考试想用\(LCT\)维护联通块\(size\),现在才发现\(LCT\)的\(size\)有虚实之分 \(Link\)与\(Acess\)中虚实变,干他丫的 \(Splay\)中只是相对关系,没有虚实变,因此不搞它 #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> #define R(a,b,c) fo…
4530: [Bjoi2014]大融合 拿这题作为lct子树查询的练手.本来以为这会是一个大知识点,结果好像只是一个小技巧? 多维护一个虚边连接着的子树大小即可. #include<cstdio> #include<cstring> #include<algorithm> #define MN 210010 using namespace std; int p,ca,f; inline int read(){ p=;ca=getchar();f=; ;ca=getcha…
BZOJ_4530_[Bjoi2014]大融合_LCT Description 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是它所在的当前能够 联通的树上路过它的简单路径的数量. 例如,在上图中,现在一共有了5条边.其中,(3,8)这条边的负载是6,因 为有六条简单路径2-3-8,2-3-8-7,3-8,3-8-7,4-3-8,4-3-8-7路过了(3,8). 现在,你的任务就是随着边的添加,动态的回…
[BJOI2014]大融合(Link Cut Tree) 题面 给出一棵树,动态加边,动态查询通过每条边的简单路径数量. 分析 通过每条边的简单路径数量显然等于边两侧节点x,y子树大小的乘积. 我们知道裸的LCT只能维护链的信息,那么怎么维护子树大小呢?我们只需要对于节点x维护x的所有虚儿子的子树大小之和vir.那么查询的时候先split(x,y),这样x到y就成为了实链,其他与x相连的节点都是虚儿子.那么x一侧的子树大小就是vir[x]+1,y一侧的子树大小就是vir[y]+1 考虑虚子树大小…
洛谷 P1230 智力大冲浪 题目描述 小伟报名参加中央电视台的智力大冲浪节目.本次挑战赛吸引了众多参赛者,主持人为了表彰大家的勇气,先奖励每个参赛者m元.先不要太高兴!因为这些钱还不一定都是你的?!接下来主持人宣布了比赛规则: 首先,比赛时间分为n个时段(n≤500),它又给出了很多小游戏,每个小游戏都必须在规定期限ti前完成(1≤ti≤n).如果一个游戏没能在规定期限前完成,则要从奖励费m元中扣去一部分钱wi,wi为自然数,不同的游戏扣去的钱是不一样的.当然,每个游戏本身都很简单,保证每个参…
题目: 洛谷4219 分析: 很明显,查询的是删掉某条边后两端点所在连通块大小的乘积. 有加边和删边,想到LCT.但是我不会用LCT查连通块大小啊.果断弃了 有加边和删边,还跟连通性有关,于是开始yy线段树分治做法(不知道线段树分治?推荐一个伪模板题BZOJ4025二分图事实上这个链接是指向我的博客的).把每次操作(加边或查询)看做一个时刻,一条边存在的区间就是它加入后没有被查询的时间区间的并.于是用可撤销并查集维护一下连通块大小即可. 代码: #include <cstdio> #inclu…
洛谷题目传送门 思路分析 最简单粗暴的想法,肯定是大力LCT,每个树都来一遍link之类的操作啦(T飞就不说了) 考虑如何优化算法.如果没有1操作,肯定每个树都长一样.有了1操作,就来仔细分析一下对不同树的影响. 假设有一个1操作形如\(l\ r\ x\),那么从微观来看差异,我们只关注第l-1棵树和第l棵树.再假设以后都没有了0操作,那么我们可以认为,第l棵树是第l-1棵树把这个1操作以后嫁接在原来生长节点上的所有节点(以及所有子树)全部转而嫁接到x上.再看第r棵树和第r+1棵树,是不是可以认…
洛谷题目传送门 ZJOI的考场上最弱外省选手T2 10分成功滚粗...... 首先要想到30分的结论 说实话Day1前几天刚刚刚掉了SDOI2017的树点涂色,考场上也想到了这一点 想到了又有什么用?反正想不到最大的贡献是怎么推出来的 然后晚上心中怀着九条CNM看完了Solution.pdf 貌似对我这个蒟蒻来说也只有这一题可做了...... 已知书上每个点access的总次数,构造出一个顺序,最大化虚实边的切换总次数 其实如果能发现最优顺序的构造是没有后效性的话,问题便可以进一步简化 考虑每个…
洛谷题目传送门 最无脑LCT题解,Dalao们的各种算法都比这个好多啦... 唯一的好处就是只管码代码就好了 开战cut,停战link,询问findroot判连通性 太无脑,应该不用打注释了.常数大就不用说了(逃 #include<cstdio> #include<cstdlib> #define R register int #define I inline void #define lc c[x][0] #define rc c[x][1] #define G ch=getch…