B-经济学-基尼指数】的更多相关文章

Python实现CART(基尼指数) 运行环境 Pyhton3 treePlotter模块(画图所需,不画图可不必) matplotlib(如果使用上面的模块必须) 计算过程 st=>start: 开始 e=>end op1=>operation: 读入数据 op2=>operation: 格式化数据 cond=>condition: 是否建树完成 su=>subroutine: 递归建树 op3=>operation: 选择基尼指数最小的为判决点 op4=>…
目录 基尼指数 一.基尼指数简介 更新.更全的<机器学习>的更新网站,更有python.go.数据结构与算法.爬虫.人工智能教学等着你:https://www.cnblogs.com/nickchen121/ 基尼指数 一.基尼指数简介 基尼指数(gini coefficient)代表了模型的不纯度,基尼指数越小,则不纯度越低:基尼指数越大,则不纯度越高,这和信息增益比是相反的. 假设一个训练集有\(K\)个类别,样本属于第\(k\)个类别的概率为\(p_k\),则它的基尼指数为 \[ G(p…
既能做分类,又能做回归.分类:基尼值作为节点分类依据.回归:最小方差作为节点的依据. 节点越不纯,基尼值越大,熵值越大 pi表示在信息熵部分中有介绍,如下图中介绍 方差越小越好. 选择最小的那个0.3 代码: #整个c4.5决策树的所有算法: import numpy as np import operator def creatDataSet(): """ outlook-> 0:sunny | 1:overcast | 2:rain temperature->…
1. 1.问题的引入 2.一个实例 3.基本概念 4.ID3 5.C4.5 6.CART 7.随机森林 2. 我们应该设计什么的算法,使得计算机对贷款申请人员的申请信息自动进行分类,以决定能否贷款? 一个女孩的母亲要给这个女孩介绍男朋友,于是有了下面的对话: 女儿:多大年纪了? 母亲:26. 女儿:长的帅不帅? 母亲:挺帅的. 女儿:收入高不? 母亲:不算很高,中等情况. 女儿:是公务员不? 母亲:是,在税务局上班呢. 女儿:那好,我去见见. 决策过程: 这个女孩的决策过程就是典型的分类树决策.…
决策树 是表示基于特征对实例进行分类的树形结构       从给定的训练数据集中,依据特征选择的准则,递归的选择最优划分特征,并根据此特征将训练数据进行分割,使得各子数据集有一个最好的分类的过程.   决策树算法3要素: 特征选择 决策树生成 决策树剪枝   部分理解:   关于决策树生成 决策树的生成过程就是 使用满足划分准则的特征不断的将数据集划分为纯度更高,不确定性更小的子集的过程. 对于当前数据集D的每一次的划分,都希望根据某特征划分之后的各个子集的纯度更高,不确定性更小.   而如何度…
之前转过一篇文章:2016年GitHub排名前20的Python机器学习开源项目(转),说明现在已经有了很多很好的机器学习的包,我们不必从底层开始实现,只要懂点算法.会看文档,一般人也能玩好机器学习. 随着生信领域的数据量越来越多,我们得到知识的途径必然会发生变化,慢慢地我们将不再使用固定呆板的模型,而是使用灵活的机器学习方法从海量数据中提取出知识. 现在我准备开一系列的机器学习算法原理及python包的实例的文章,开始全面的熟悉python和机器学习. 决策树--从原理到实现    机器学习…
20世纪初意大利经济学家基尼,于1922年提出的定量测定收入分配差异程度的指标.它是根据洛伦茨曲线找出了判断分配平等程度的指标(如下图). 设实际收入分配曲线和收入分配绝对平等曲线之间的面积为A,实际收入分配曲线右下方的面积为B.并以A除以A+B的商表示不平等程度.这个数值被称为基尼系数或称洛伦茨系数.如果A为零,基尼系数为零,表示收入分配完全平等:如果B为零则系数为1,收入分配绝对不平等.该系数可在零和1之间取任何值.收入分配越是趋向平等,洛伦茨曲线的弧度越小,基尼系数也越小,反之,收入分配越…
决策树在商品购买能力预测案例中的算法实现 作者:白宁超 2016年12月24日22:05:42 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结合视频学习和书籍基础的笔记所得.本系列文章将采用理论结合实践方式编写.首先介绍机器学习和深度学习的范畴,然后介绍关于训练集.测试集等介绍.接着分别介绍机器学习常用算法,分别是监督学习之分类(决策树.临近取样.支持向量机.神经网络算法)监督学习之回归(线性回归.非线性回归)非监督学习(…
--------------------------------------------------------------------------------------- 本系列文章为<机器学习实战>学习笔记,内容整理自书本,网络以及自己的理解,如有错误欢迎指正. 源码在Python3.5上测试均通过,代码及数据 --> https://github.com/Wellat/MLaction -----------------------------------------------…
谈完数据结构中的树(详情见参照之前博文<数据结构中各种树>),我们来谈一谈机器学习算法中的各种树形算法,包括ID3.C4.5.CART以及基于集成思想的树模型Random Forest和GBDT.本文对各类树形算法的基本思想进行了简单的介绍,重点谈一谈被称为是算法中的“战斗机”,机器学习中的“屠龙刀”的GBDT算法. 1. 决策树的模型 决策树是一种基本的分类与回归方法,它可以被认为是一种if-then规则的集合.决策树由节点和有向边组成,内部节点代表了特征属性,外部节点(叶子节点)代表了类别…