首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
Pandas——数据处理对象
】的更多相关文章
Pandas——数据处理对象
Pandas中的数据结构 Series: 一维数组,类似于Python中的基本数据结构list,区别是Series只允许存储相同的数据类型,这样可以更有效的使用内存,提高运算效率.就像数据库中的列数据: DataFrame: 二维的表格型数据结构.很多功能与R中的data.frame类似.可以将DataFrame理解为Series的容器: Panel:三维的数组,可以理解为DataFrame的容器. Series是一个一维的类似的数组对象,包含一个数组的数据(任何NumPy的数据类型)和一个与数…
pandas.DataFrame对象解析
pandas.DataFrame对象类型解析 df = pd.DataFrame([[1,"2",3,4],[5,"6",7,8]],columns=["a","b","c","d"]) method解析 1.add()方法:类似加法运算(相加的元素必须是同一对象的数据) | add(self, other, axis='columns', level=None, fill_value=…
python pandas 数据处理
pandas是基于numpy包扩展而来的,因而numpy的绝大多数方法在pandas中都能适用. pandas中我们要熟悉两个数据结构Series 和DataFrame Series是类似于数组的对象,它有一组数据和与之相关的标签组成. import pandas as pd object=pd.Series([2,5,8,9]) print(object) 结果为: 0 21 52 83 9dtype: int64 结果中包含一列数据和一列标签我们可以用values和index分别进行引用 p…
数据分析入门——pandas数据处理
1,处理重复数据 使用duplicated检测重复的行,返回一个series,如果不是第一次出现,也就是有重复行的时候,则为True: 对应的,可以使用drop_duplicates来删除重复的行: 以上两个方法,都不能有重复的列! 2.map函数:列处理 map() 是一个Series的函数,DataFrame结构中没有map().map()将一个自定义函数应用于Series结构中的每个元素(elements). 传入一个拉姆达表达式: 可以通过不存在的列名,利用map映射新增一列:(当然,此…
pandas数据处理
首先,数据加载 pandas提供了一些用于将表格型数据读取为DataFrame对象的函数,期中read_csv和read_table这两个使用最多. 1.删除重复元素 使用duplicated()函数检测重复的行,返回元素为布尔类型的Series对象,每个元素对应一行,如果该行不是第一次出现,则元素为True. - keep参数:指定保留哪一重复的行数据 - True 重复的行 创建具有重复元素行的DataFrame from pandas import Series,DataFrame imp…
Pandas数据处理实战:福布斯全球上市企业排行榜数据整理
手头现在有一份福布斯2016年全球上市企业2000强排行榜的数据,但原始数据并不规范,需要处理后才能进一步使用. 本文通过实例操作来介绍用pandas进行数据整理. 照例先说下我的运行环境,如下: windows 7, 64位 python 3.5 pandas 0.19.2版本 在拿到原始数据后,我们先来看看数据的情况,并思考下我们需要什么样的数据结果. 下面是原始数据: 在本文中,我们需要以下的初步结果,以供以后继续使用. 可以看到,原始数据中,跟企业相关的数据中(“Sales”,“Prof…
Pandas数据处理 学习
pandas是在numpy的基础上建立的新程序库,提供了一种高效的DataFrame数据结构. DataFrame本质上是一种带行标签和列标签.支持相同数据类型和缺失值的多维数组. 先看版本信息: pandas主要包含了3种数据结构:Series,DataFrame和Index 1. pandas的Series对象 2. Pandas的DataFrame对象 DataFrame可以堪称是二维数组 3. Pandas的Index对象 一个不可变数组胡总和有序数组…
Python数据科学手册-Pandas数据处理之简介
Pandas是在Numpy基础上建立的新程序库,提供了一种高效的DataFrame数据结构 本质是带行标签 和 列标签.支持相同类型数据和缺失值的 多维数组 增强版的Numpy结构化数组 行和列不在只是简单的整数索引,还可以带上标签, 三个基本数据结构 Series DataFrame Index Series Series将一组数据和一组索引绑定在一起 可以通过values 和 index属性获取数据, 与Numpy数据的区别:Numpy数组通过隐式定义的整数索引获取数值,Pandas 的Se…
pandas数据处理基础——筛选指定行或者指定列的数据
pandas主要的两个数据结构是:series(相当于一行或一列数据机构)和DataFrame(相当于多行多列的一个表格数据机构). 本文为了方便理解会与excel或者sql操作行或列来进行联想类比 1.重新索引:reindex和ix 上一篇中介绍过数据读取后默认的行索引是0,1,2,3...这样的顺序号.列索引相当于字段名(即第一行数据),这里重新索引意思就是可以将默认的索引重新修改成自己想要的样子. 1.1 Series 比方说:data=Series([4,5,6],index=['a',…
Python———pandas数据处理
pandas模块 更高级的数据分析工具基于NumPy构建包含Series和DataFrame两种数据结构,以及相应方法 调用方法:from pandas import Series, DataFrameimport pandas as pd Series又像数组又像字典:有序通常是同构的元素采用NumPy中的数据类型既以按键索引,又可以按序号索引 默认创建: 以字典形式创建 以常规形式创建 Series算术运算中按照键来对齐 NaN和数字做运算,得NaN DataFrame 很像一个Exc…