MapReduce 图解流程】的更多相关文章

转自:http://www.open-open.com/lib/view/open1453097241308.html 在MapReduce中,一个YARN  应用被称作一个job, MapReduce 框架提供的应用,master的一个实现被称作MRAppMaster MapReduce Job的时间线 MapReduce Job  运行的时间线: Map Phase:若干 Map Tasks 被执行 Reduce Phase: 若干Reduce Tasks 被执行 reduce可能会在map…
接上一篇讲解:http://blog.csdn.net/mrcharles/article/details/50465626 map任务:溢写阶段 正如我们在执行阶段看到的一样,map会使用Mapper.Context.write()将map函数的输出溢写到内存中的环形缓冲区 (MapTask.MapOutputBuffer).缓冲区的大小是固定的,通过mapreduce.task.io.sort.mb (default: 100MB)指定. 任何时候当这个缓冲区将要充满的时候(mapreduc…
Anatomy of a MapReduce Job In MapReduce, a YARN application is called a Job. The implementation of the Application Master provided by the MapReduce framework is called MRAppMaster. Timeline of a MapReduce Job This is the timeline of a MapReduce Job e…
1.MapReduce是什么? MapReduce是一种编程模型,用于大规模数据集的并行运算.它借用了函数式的编程概念,是Google发明的一种数据处理模型. 主要思想为:Map(映射)和Reduce(化简). 一个Map/Reduce作业(Job)通常会把输入的数据集切分为若干独立的数据块,由Map任务(Task)以完全并行的方式处理它们.框架会先对Map的输出进行排序,然后把结果输入给Reduce任务.通常作业的输入和输出都会被存储在文件系统中.整个框架负责任务的调度和监控,以及重新执行已经…
引言: 虽然MapReduce计算框架简化了分布式程序设计,将所有的并行程序均需要关注的设计细节抽象成公共模块并交由系统实现,用户只需关注自己的应用程序的逻辑实现,提高了开发效率,但是开发如果对Mapreduce计算框架如何实现这样的魔术没有一个基本的了解,那么在面临多任务.大数据而出现大量数据倾斜,计算速度慢等问题时,将无法给出解决方案.也无法在设计MapReduce程序时根据框架的特性优化逻辑算法,所以了解MapReduce工作流程和Shuffle原理是学习MapReduce程序设计的必修课…
Anatomy of a MapReduce Job In MapReduce, a YARN application is called a Job. The implementation of the Application Master provided by the MapReduce framework is called MRAppMaster. Timeline of a MapReduce Job This is the timeline of a MapReduce Job e…
角色描述:JobClient:执行任务的客户端JobTracker:任务调度器TaskTracker:任务跟踪器Task:具体的任务(Map OR Reduce) 从生命周期的角度来看,mapreduce流程大概经历这样几个阶段:初始化.分配.执行.反馈.成功与失败的后续处理 每个阶段所做的事情大致如下 任务初始化 1.JobClient对数据源进行切片切片信息由InputSplit对象封装,接口定义如下: public interface InputSplit extends Writable…
MapReduce是Hadoop2.x的一个计算框架,利用分治的思想,将一个计算量很大的作业分给很多个任务,每个任务完成其中的一小部分,然后再将结果合并到一起.将任务分开处理的过程为map阶段,将每个小任务的结果合并到一起的过程为reduce阶段.下面先从宏观上介绍一下客户端提交一个作业时,Hadoop2.x各个组件之间的联系及处理流程.然后我们再具体看看MapReduce计算框架在执行一个作业时,做了些什么. YARN YARN是Hadoop2.x框架下的资源管理系统,其组成部分为: 1)全局…
研究MapReduce已经有一段时间了.起初是从分析WordCount程序开始,后来开始阅读Hadoop源码,自认为已经看清MapReduce的运行流程.现在把自己的理解贴出来,与大家分享,欢迎纠错. 还是以最经典的WordCount程序作为基础,来分析map阶段.reduce阶段和最复杂的shuffle阶段. 文本1:hello world                                      文本2:map reduce hello hadoop            …
MapReduce 一种分布式计算模型,解决海量数据的计算问题,MapReduce将计算过程抽象成两个函数 Map(映射):对一些独立元素(拆分后的小块)组成的列表的每一个元素进行指定的操作,可以高度并行. Reduce(化简):对一个列表的元素进行合并 input -> map -> reduce -> output 数据流通格式<kay,value> eg: 原始数据 -> map input map map output(reduce input) shuffle…