优化算法 先导知识:泰勒公式 \[ f(x)=\sum_{n=0}^{\infty}\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n \] 一阶泰勒展开: \[ f(x)\approx f(x_0)+f'(x_0)(x-x_0) \] 二阶泰勒展开: \[ f(x)\approx f(x_0)+f'(x_0)(x-x_0)+\frac{f''(x_0)}{2}(x-x_0)^2 \] 梯度下降法 \[ \begin{align*} &f(x)=f(x^k)+g_k^T*(x-x^…
原文链接:http://www.edvancer.in/logistic-regression-vs-decision-trees-vs-svm-part1/ 分类问题是我们在各个行业的商业业务中遇到的主要问题之一.在本文中,我们将从众多技术中挑选出三种主要技术展开讨论,逻辑回归(Logistic Regression).决策树(Decision Trees)和支持向量机(Support Vector Machine,SVM). 上面列出的算法都是用来解决分类问题(SVM和DT也被用于回归,但这…
原文地址: Logistic Regression vs Decision Trees vs SVM: Part II 在这篇文章,我们将讨论如何在逻辑回归.决策树和SVM之间做出最佳选择.其实 第一篇文章已经给出了很好的回答,不过在这里再补充一些.下面将继续深入讨论这个主题.事实上,这三个算法在其设计之初就赋予了一定的内部特性,我们将其分析透彻的主要目的在于:当你面临商业问题时,这些算法的特性可以让你在选择这些算法时得到一些灵感. 首先,我们来分析下逻辑回归(Logistic Regressi…
python信用评分卡建模(附代码,博主录制) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share 参考https://blog.csdn.net/weixin_39445556/article/details/84502260 本章我们来学习L-BFGS算法.L…
(一)局部加权回归 通常情况下的线性拟合不能很好地预测所有的值,因为它容易导致欠拟合(under fitting).如下图的左图.而多项式拟合能拟合所有数据,但是在预测新样本的时候又会变得很糟糕,因为它导致数据的 过拟合(overfitting),不符合数据真实的模型.如下图的右图. 下面来讲一种非参数学习方法——局部加权回归(LWR).为什么局部加权回归叫做非参数学习方法呢?首先,参数学习方法是这样一种方法:在训练完成所有数据后得到一系列训练参数,然后根据训练参数来预测新样本的值,这时不再依赖…
Logistic Regression 一.内容概要 Classification and Representation Classification Hypothesis Representation Decision Boundary Logistic Regression Model 损失函数(cost function) 简化损失函数和梯度下降算法 Advanced Optimization(高级优化方法) Solving the problem of Overfitting 什么是过拟…
针对逻辑回归问题,我们在之前的课程已经学习过两种优化算法:我们首先学习了使用梯度下降法来优化代价函数…
朴素贝叶斯与逻辑回归的区别: 朴素贝叶斯 逻辑回归 生成模型(Generative model) 判别模型(Discriminative model) 对特征x和目标y的联合分布P(x,y)建模,使用极大后验概率估计法估计出最有可能的P(y|x) 直接对后验概率P(y|x)建模,使用极大似然估计法使其最大化 不需要优化参数,先用极大似然估计法估计出先验概率P(y)和条件概率P(x|y),然后计算出极大后验概率P(y|x) 需要优化参数,先用极大似然估计法得出损失函数,再用梯度下降法等优化参数 假…
1.lr.predict_proba(under_text_x)  获得的是正负的概率值 在sklearn逻辑回归的计算过程中,使用的是大于0.5的是正值,小于0.5的是负值,我们使用使用不同的概率结果判定来研究概率阈值对结果的影响 从图中我们可以看出,阈值越小,被判为正的越多,即大于阈值的就是为正,但是存在一个很明显的问题就是很多负的也被判为正值. 当阈值很小时,数据的召回率很大,但是整体数据的准确率很小 因此我们需要根据召回率和准确率的综合考虑选择一个合适的阈值 lr = LogisticR…
一.任务基础 我们将建立一个逻辑回归模型来预测一个学生是否被大学录取.假设你是一个大学系的管理员,你想根据两次考试的结果来决定每个申请人的录取机会.你有以前的申请人的历史数据,你可以用它作为逻辑回归的训练集.对于每一个培训例子,你有两个考试的申请人的分数和录取决定.为了做到这一点,我们将建立一个分类模型,根据考试成绩估计入学概率. 数据集链接为:链接:https://pan.baidu.com/s/1H3T3RfyT3toKbFrqO2z8ug,提取码:jku5 首先导入需要使用到的Python…