AVL树(Java实现)】的更多相关文章

                                                                                    AVL树----java AVL树是高度平衡的二叉查找树 1.单旋转LL旋转 理解记忆:1.在不平衡的节点的左孩子的左孩子插入导致的不平衡,所以叫LL private AVLTreeNode<T> leftLeftRotation(AVLTreeNode<T> k2) { AVLTreeNode<T> k…
AVL树基本介绍 AVL树是一种自平衡的二叉查找树,在AVL树中任何节点的两个子树的高度差不能超过1.就是相当于在二叉搜索树的基础上,在插入和删除时进行了平衡处理. 不平衡的四种情况 LL:结构介绍 看如下图,假设最初只有k1, k2, k3, y, z 五个结点,这时该树两边的高度分别为3 和 2,相差为1,满足AVL平衡的概念. 随后插入了结点 x ,导致了不平衡.k1.left.left 有了子树,导致了不平衡.所以是LL结构. (这个 x 结点是k3的左孩子还是右孩子无所谓,因为无论在左…
欢迎探讨,如有错误敬请指正 如需转载,请注明出处http://www.cnblogs.com/nullzx/ 1. AVL定义 AVL树是一种改进版的搜索二叉树.对于一般的搜索二叉树而言,如果数据恰好是按照从小到大的顺序或者从大到小的顺序插入的,那么搜索二叉树就对退化成链表,这个时候查找,插入和删除的时间都会上升到O(n),而这对于海量数据而言,是我们无法忍受的.即使是一颗由完全随机的数据构造成的搜索二叉树,从统计角度去分析,在进行若甘次的插入和删除操作,这个搜索二叉树的高度也不能令人满意.这个…
概要 前面分别介绍了AVL树"C语言版本"和"C++版本",本章介绍AVL树的Java实现版本,它的算法与C语言和C++版本一样.内容包括:1. AVL树的介绍2. AVL树的Java实现3. AVL树的Java测试程序 转载请注明出处:http://www.cnblogs.com/skywang12345/p/3577479.html 更多内容: 数据结构与算法系列 目录 (01) AVL树(一)之 图文解析 和 C语言的实现(02) AVL树(二)之 C++的实…
AVL树的介绍 AVL树是高度平衡的而二叉树.它的特点是:AVL树中任何节点的两个子树的高度最大差别为1. 上面的两张图片,左边的是AVL树,它的任何节点的两个子树的高度差别都<=1:而右边的不是AVL树,因为7的两颗子树的高度相差为2(以2为根节点的树的高度是3,而以8为根节点的树的高度是1). AVL树的Java实现 1. 节点 1.1 节点定义 public class AVLTree<T extends Comparable<T>> { private AVLTree…
AVL树:平衡的二叉搜索树,其子树也是AVL树. 以下是我实现AVL树的源码(使用了泛型): import java.util.Comparator; public class AVLTree<T extends Comparable<T>> { /* AVL树: 左右子树高度绝对值最多差1的二叉搜索树 子树也是AVL树 */ private Node<T> root; class Node<T extends Comparable<T>>{ T…
1,AVL树又称平衡二叉树,它首先是一颗二叉查找树,但在二叉查找树中,某个结点的左右子树高度之差的绝对值可能会超过1,称之为不平衡.而在平衡二叉树中,任何结点的左右子树高度之差的绝对值会小于等于 1. 2,为什么需要AVL树呢?在二叉查找树中最坏情况下查找某个元素的时间复杂度为O(n),而AVL树能保证查找操作的时间复杂度总为O(logn). 对于一棵BST树而言,不仅有查找操作,也有插入.删除等改变树的形态的操作.随着不断地插入.删除,BST树有可能会退化成链表的形式,使得查找的时间复杂度变成…
本文根据<大话数据结构>一书及网络资料,实现了Java版的平衡二叉树(AVL树). 平衡二叉树介绍 在上篇博客中所实现的二叉排序树(二叉搜索树),其查找性能取决于二叉排序树的形状,当二叉排序树比较平衡时(深度与完全二叉树相同,[log2n]+1),时间复杂度为O(logn):但也有可能出现极端的斜树,如依照{35,37,47,51,58,62,73,88,91,99}的顺序,构建的二叉排序树就如下图所示,查找时间复杂度为O(n). 图1 斜树 为提高查找复杂度,在二叉排序树的基础上,提出了二叉…
目录 AVL Tree精讲专题 前言 一.AVL Tree for CPP(Coding) 1.AVL树原型 2.旋转的四种方式 二.完整版AVL Tree的CPP和JAVA实现 AVL Tree CPP FULL Coding AVL Tree JAVA FULL Coding AVL Tree精讲专题 前言 因为AVL树之前写过一次,但是感觉左右旋转弄反了,这次重新整理了下,参照数据结构--陈越著,分别进行列举c++版本的AVL树和Java版本的AVL树,供参考和互相学习.图片来源,我们老师…
在上篇博客中,学习了二分搜索树:Java数据结构和算法(六)--二叉树,但是二分搜索树本身存在一个问题: 如果现在插入的数据为1,2,3,4,5,6,这样有序的数据,或者是逆序 这种情况下的二分搜索树和链表几乎完全一样,是最不平衡的二叉树了,二分搜索树的效率直接降到最低 如何解决上述问题: 使二分搜索树保持平衡二叉树的特征,而今天要讲述的AVL树是最经典的平衡二叉树了 满二叉树: 除了叶子节点其余节点都有左右两个子节点的树 完全二叉树: 对于一个树高为h的二叉树,如果其第0层至第h-1层的节点都…
AVL树(平衡二叉树)定义 AVL树本质上是一颗二叉查找树,但是它又具有以下特点:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树,并且拥有自平衡机制.在AVL树中任何节点的两个子树的高度最大差别为一,所以它也被称为平衡二叉树.下面是平衡二叉树和非平衡二叉树对比的例图: 平衡因子(bf):结点的左子树的深度减去右子树的深度,那么显然-1<=bf<=1; AVL树的作用 我们知道,对于一般的二叉搜索树(Binary Search Tree),其期望高度(…
  1.概念: AVL树本质上还是一个二叉搜索树,不过比二叉搜索树多了一个平衡条件:每个节点的左右子树的高度差不大于1. 二叉树的应用是为了弥补链表的查询效率问题,但是极端情况下,二叉搜索树会无限接近于链表,这种时候就无法体现二叉搜索树在查询时的高效率,而最初出现的解决方式就是AVL树.如下图: 2.旋转 说到AVL树就不得不提到树的旋转,旋转是AVL维持平衡的方式,主要有以下四种类型. 2.1.左左旋转 如图2-1所示,此时A节点的左树与右树的高度差为2,不符合AVL的定义,此时以B节点为轴心…
package Demo; public class AVLtree { private Node root; //首先定义根节点 private static class Node{ //定义Node指针参数 private int key; //节点 private int balance; //平衡值 private int height; //树的高度 private Node left; //左节点 private Node right; //右节点 private Node pare…
1.AVL树介绍 前面我们已经介绍了二叉搜索树.普通的二叉搜索树在插入.删除数据时可能使得全树的数据分布不平衡,退化,导致二叉搜索树最关键的查询效率急剧降低.这也引出了平衡二叉搜索树的概念,平衡二叉搜索树在此前的基础上,通过一系列的等价变换使二叉搜索树得以始终处于"平衡"的状态,拥有稳定且高效的查询效率. AVL树是最早被计算机科学家发明的自平衡二叉搜索树,AVL树得名于它的发明者G. M. Adelson-Velsky和E. M. Landis,他们在1962年的论文<An a…
AVL树的定义 在计算机科学中,AVL树是最先发明的自平衡二叉查找树.在AVL树中任何节点的两个子树的高度最大差别为1,所以它也被称为高度平衡树.查找.插入和删除在平均和最坏情况下的时间复杂度都是.增加和删除可能需要通过一次或多次树旋转来重新平衡这个树.AVL树得名于它的发明者G. M. Adelson-Velsky和E. M. Landis,他们在1962年的论文<An algorithm for the organization of information>中发表了它. 节点的平衡因子是…
Avl树即左右子树的深度[高度]相差不可超过1,所以在插入key的时候,就会出现需要旋转[更改根节点]的操作 下面是源代码: /* the define of avltree's node */ class MyNode { int key, height; MyNode left, right; MyNode(int d) { key = d; height = 1; } } public class MyAvlTree { MyNode root; /* the function of ge…
平衡二叉树(AVL树) 二叉排序树问题分析 左子树全部为空,从形式上看更像一个单链表 插入速度没有影响 查询速度明显降低 解决方案:平衡二叉树 基本介绍 平衡二叉树也叫二叉搜索树,保证查询效率较高 它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两棵子树都是一棵平衡二叉树 常用的实现方法有红黑树.AVL.替罪羊树.Treap.伸展树等 平衡二叉树左旋转 使用条件 右子树高度与左子树高度插值大于1的时候,使用左旋转 要求 给定数列{4,3,6,5,7,8},创建对应的平衡二叉树 创…
平衡二叉树(AVL 树) 1 看一个案例(说明二叉排序树可能的问题) 给你一个数列{1,2,3,4,5,6},要求创建一颗二叉排序树(BST), 并分析问题所在.  左边 BST 存在的问题分析: 1) 左子树全部为空,从形式上看,更像一个单链表. 2) 插入速度没有影响 3) 查询速度明显降低(因为需要依次比较), 不能发挥 BST 的优势,因为每次还需要比较左子树,其查询速度比 单链表还慢 4) 解决方案-平衡二叉树(AVL)   2 基本介绍 1) 平衡二叉树也叫平衡二叉搜索树(Self…
(百度百科)在计算机科学中,AVL树是最先发明的自平衡二叉查找树.在AVL树中任何节点的两个子树的高度最大差别为一,所以它也被称为高度平衡树.查找.插入和删除在平均和最坏情况下都是O(log n).增加和删除可能需要通过一次或多次树旋转来重新平衡这个树.AVL树得名于它的发明者 G.M. Adelson-Velsky 和 E.M. Landis,他们在 1962 年的论文 "An algorithm for the organization of information" 中发表了它.…
二叉查找树:由于二叉查找树建树的过程即为插入的过程,所以其中序遍历一定为升序排列! 插入:直接插入,插入后一定为根节点 查找:直接查找 删除:叶子节点直接删除,有一个孩子的节点删除后将孩子节点接入到父节点即可,有两个孩子的节点,将左儿子最右边节点(或右儿子最左边节点)替换到根节点即可. AVL树(二叉平衡查找树) 定义:节点的平衡度(左子树的高度 - 右子树的高度)只能为-1.0.1的二叉查找树. 创建:需要一个变量记录每个节点的平衡度 查找:直接查找 插入:LL.LR.RL.RR过程 删除:分…
二叉查找树(BSTree)中进行查找.插入和删除操作的时间复杂度都是O(h),其中h为树的高度.BST的高度直接影响到操作实现的性能,最坏情况下,二叉查找树会退化成一个单链表,比如插入的节点序列本身就有序,这时候性能会下降到O(n).可见在树的规模固定的前提下,BST的高度越低越好. >>平衡二叉树 平衡二叉树是计算机科学中的一类改进的二叉查找树.平衡二叉树具有以下性质: (1)一棵空树是平衡二叉树 (2)如果树不为空,它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉…
AVL树的基本概念 AVL树是一种高度平衡的(height balanced)二叉搜索树:对每一个结点x,x的左子树与右子树的高度差(平衡因子)至多为1. 有人也许要问:为什么要有AVL树呢?它有什么作用呢? 我们先来看看二叉搜索树吧(因为AVL树本质上是一棵二叉搜索树),假设有这么一种极端的情况:二叉搜索树结点的插入顺序为1,2,3,4,5,也就是: 显而易见,这棵二叉搜索树已经其退化成一个链表了,也就是说,它在查找上的优势已经全无了—— 在这种情况下,查找一个结点的时间复杂度是O(n)! 如…
概要 本章介绍AVL树.和前面介绍"二叉查找树"的流程一样,本章先对AVL树的理论知识进行简单介绍,然后给出C语言的实现.本篇实现的二叉查找树是C语言版的,后面章节再分别给出C++和Java版本的实现.建议:若您对"二叉查找树"不熟悉,建议先学完"二叉查找树"再来学习AVL树. 目录 1. AVL树的介绍2. AVL树的C实现3. AVL树的C实现(完整源码)4. AVL树的C测试程序 转载请注明出处:http://www.cnblogs.com…
概要 上一章通过C语言实现了AVL树,本章将介绍AVL树的C++版本,算法与C语言版本的一样. 目录 1. AVL树的介绍2. AVL树的C++实现3. AVL树的C++测试程序 转载请注明出处:http://www.cnblogs.com/skywang12345/p/3577360.html 更多内容: 数据结构与算法系列 目录 (01) AVL树(一)之 图文解析 和 C语言的实现(02) AVL树(二)之 C++的实现(03) AVL树(三)之 Java的实现 AVL树的介绍 AVL树是…
首先要说AVL树,我们就必须先说二叉查找树,先介绍二叉查找树的一些特性,然后我们再来说平衡树的一些特性,结合这些特性,然后来介绍AVL树. 一.二叉查找树 1.二叉树查找树的相关特征定义 二叉树查找树,又叫二叉搜索树,是一种有顺序有规律的树结构.它可以有以下几个特征来定义它: (1)首先它是一个二叉树,具备二叉树的所有特性,他可以有左右子节点(左右孩子),可以进行插入,删除,遍历等操作: (2)如果根节点有左子树,则左子树上的所有节点的值均小于根节点上的值,如果根节点有右子树,则有字数上的所有节…
单例模式 第一种(懒汉,线程不安全): public class Singleton { private static Singleton instance; private Singleton (){} public static Singleton getInstance() { if (instance == null) { instance = new Singleton(); } return instance; } } 这种写法lazy loading很明显,但是致命的是在多线程不能…
文字转载自:http://www.cnblogs.com/vamei 代码转载自:http://www.blogjava.net/javacap/archive/2007/12/19/168627.html 我们讨论过,树的搜索效率与树的深度有关.二叉搜索树的深度可能为n,这种情况下,每次搜索的复杂度为n的量级.AVL树通过动态平衡树的深度,单次搜索的复杂度为log(n) (以上参考纸上谈兵 AVL树).我们下面看伸展树(splay tree),它对于m次连续搜索操作有很好的效率. 伸展树会在一…
数据结构与算法(一):基础简介 数据结构与算法(二):基于数组的实现ArrayList源码彻底分析 数据结构与算法(三):基于链表的实现LinkedList源码彻底分析 数据结构与算法(四):基于哈希表实现HashMap核心源码彻底分析 数据结构与算法(五):LinkedHashMap核心源码彻底分析 数据结构与算法(六):树与二叉树 数据结构与算法(七):赫夫曼树 数据结构与算法(八):二叉排序树 本文目录 一.二叉排序树性能问题 在上一篇中我们提到过二叉排序树构造可能出现的性能问题,比如我们…
西天取经的路上,一样上演着编程的乐趣..... 1.若它的左子树不为空,则左子树上所有的节点值都小于它的根节点值. 2.若它的右子树不为空,则右子树上所有的节点值均大于它的根节点值. 3.它的左右子树也分别可以充当为二叉查找树. 例如: 例如,我现在想要查找数值为14的节点.由于二叉查找树的特性,我们可以很快着找到它,其过程如下: 1.和根节点9比较 2.由于 14 > 9,所以14只可能存在于9的右子树中,因此查看右孩子13 3.由于 14 > 13,所以继续查看13的右孩子15 4.由于…
1.AVL树 带有平衡条件的二叉查找树,所以它必须满足条件: 1 是一棵二叉查找树 2 满足平衡条件 1.1 平衡条件: 1)严格的平衡条件:每个节点都必须有相同高度的左子树和右子树(过于严格而不被使用). 2)AVL树的平衡条件:每个节点的左子树和右子树的高度最多差1的二叉查找树(空树的高度定义为-1) 1.2 特点: 严格的高度平衡,使得AVL树在查找时耗费时间更少.它理论上的时间复杂度为O(logN). 虽然二叉查找树的平均时间也为O(logN),但是二叉查找树并不平衡,它的最坏情况是所有…