首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
FLink迟到数据的处理之三
】的更多相关文章
FLink迟到数据的处理之三
Flink迟到的数据更新窗口计算结果,窗口销毁后的迟到数据输出到测输出流 主程序: //TODO 使用迟到的数据更新窗口的计算结果 public static void main(String[] args) throws Exception { StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); env.setParallelism(1); Properties prope…
【源码解析】Flink 是如何处理迟到数据
相信会看到这篇文章的都对Flink的时间类型(事件时间.处理时间.摄入时间)和Watermark有些了解,当然不了解可以先看下官网的介绍:https://ci.apache.org/projects/flink/flink-docs-master/dev/event_time.html 这里就会有这样一个问题:FLink 是怎么基于事件时间和Watermark处理迟到数据的呢? 在回答这个问题之前,建议大家可以看下下面的Google 的三篇论文,关于流处理的模型: https://www.vld…
flink-----实时项目---day06-------1. 获取窗口迟到的数据 2.双流join(inner join和left join(有点小问题)) 3 订单Join案例(订单数据接入到kafka,订单数据的join实现,订单数据和迟到数据join的实现)
1. 获取窗口迟到的数据 主要流程就是给迟到的数据打上标签,然后使用相应窗口流的实例调用sideOutputLateData(lateDataTag),从而获得窗口迟到的数据,进而进行相关的计算,具体代码见下 WindowLateDataDemo package cn._51doit.flink.day10; import org.apache.flink.api.common.functions.MapFunction; import org.apache.flink.api.java.tup…
《从0到1学习Flink》—— Flink 写入数据到 Kafka
前言 之前文章 <从0到1学习Flink>-- Flink 写入数据到 ElasticSearch 写了如何将 Kafka 中的数据存储到 ElasticSearch 中,里面其实就已经用到了 Flink 自带的 Kafka source connector(FlinkKafkaConsumer).存入到 ES 只是其中一种情况,那么如果我们有多个地方需要这份通过 Flink 转换后的数据,是不是又要我们继续写个 sink 的插件呢?确实,所以 Flink 里面就默认支持了不少 sink,比如…
《从0到1学习Flink》—— Flink 写入数据到 ElasticSearch
前言 前面 FLink 的文章中我们已经介绍了说 Flink 已经有很多自带的 Connector. 1.<从0到1学习Flink>-- Data Source 介绍 2.<从0到1学习Flink>-- Data Sink 介绍 其中包括了 Source 和 Sink 的,后面我也讲了下如何自定义自己的 Source 和 Sink. 那么今天要做的事情是啥呢?就是介绍一下 Flink 自带的 ElasticSearch Connector,我们今天就用他来做 Sink,将 Kafk…
企业实践 | 如何更好地使用 Apache Flink 解决数据计算问题?
业务数据的指数级扩张,数据处理的速度可不能跟不上业务发展的步伐.基于 Flink 的数据平台构建.运用 Flink 解决业务场景中的具体问题等随着 Flink 被更广泛的应用于广告.金融风控.实时 BI.实时数仓.实时推荐等多种业务场景,在生产实践中已有丰富的案例与优秀的经验. Flink Forward Asia 倒计时 28 天,企业实践专题大会邀请了字节跳动.滴滴出行.快手.Bilibili.网易.爱奇艺.中国农业银行.奇虎360.贝壳找房.奇安信等不同行业一线技术专家分享 Apache…
如何用Flink把数据sink到kafka多个(成百上千)topic中
需求与场景 上游某业务数据量特别大,进入到kafka一个topic中(当然了这个topic的partition数必然多,有人肯定疑问为什么非要把如此庞大的数据写入到1个topic里,历史留下的问题,现状就是如此庞大的数据集中在一个topic里).这就需要根据一些业务规则把这个大数据量的topic数据分发到多个(成百上千)topic中,以便下游的多个job去消费自己topic的数据,这样上下游之间的耦合性就降低了,也让下游的job轻松了很多,下游的job只处理属于自己的数据,避免成百上千的job都…
flink系列-10、flink保证数据的一致性
本文摘自书籍<Flink基础教程> 一.一致性的三种级别 当在分布式系统中引入状态时,自然也引入了一致性问题.一致性实际上是“正确性级别”的另一种说法,即在成功处理故障并恢复之后得到的结果,与没有发生任何故障时得到的结果相比.在流处理中,一致性分为 3 个级别. at-most-once:数据最多被处理一次.这其实是没有正确性保障的委婉说法——故障发生之后,计数结果可能丢失. at-least-once:数据最少被处理一次.这表示计数结果可能大于正确值,但绝不会小于正确值.也就是说,计数程序在…
如何用Flink把数据sink到kafka多个不同(成百上千)topic中
需求与场景 上游某业务数据量特别大,进入到kafka一个topic中(当然了这个topic的partition数必然多,有人肯定疑问为什么非要把如此庞大的数据写入到1个topic里,历史留下的问题,现状就是如此庞大的数据集中在一个topic里).这就需要根据一些业务规则把这个大数据量的topic数据分发到多个(成百上千)topic中,以便下游的多个job去消费自己topic的数据,这样上下游之间的耦合性就降低了,也让下游的job轻松了很多,下游的job只处理属于自己的数据,避免成百上千的job都…
[原创.数据可视化系列之三]使用Ol3加载大量点数据
不管是百度地图还是高德地图,都很难得见到在地图上加载大量点要素,比如同屏1000的,因为这样客户端性能会很低,尤其是IE系列的浏览器,简直是卡的要死.但有的时候,还真的需要,比如,我要加载全球的AQI的测站和数据,这些站点在全球有4000多个,如何加载这些点并提高,OL3的ImageVector是一个很好地选择,简单的说,就是把这些要素渲染到一张图上,这样提高性能.代码如下: //加载JSON数据 mainxiu.loaddata=function(options) { …