EM最大期望算法-走读】的更多相关文章

打算抽时间走读一些算法,尽量通俗的记录下面,希望帮助需要的同学.   overview: 基本思想:      通过初始化参数P1,P2,推断出隐变量Z的概率分布(E步):      通过隐变量Z的概率分布,最大似然推断参数P1,P2 (M步).   梯度下降也可以解决隐变量估计问题,但求和项会随隐变量个数指数增长,EM方法是一种非梯度下降优化方法.     一 例子参考 ------------------------------------------------------- 引入问题:两…
[简介] em算法,指的是最大期望算法(Expectation Maximization Algorithm,又译期望最大化算法),是一种迭代算法,在统计学中被用于寻找,依赖于不可观察的隐性变量的概率模型中,参数的最大似然估计. EM 算法是 Dempster,Laind,Rubin 于 1977 年提出的求参数极大似然估计的一种方法,它可以从非完整数据集中对参数进行 MLE 估计,是一种非常简单实用的学习算法.这种方法可以广泛地应用于处理缺损数据,截尾数据,带有噪声等所谓的不完全数据.可以有一…
EM, ExpectationMaximization Algorithm, 期望最大化算法.一种迭代算法,用于含有隐变量(hidden variable)的概率参数模型的最大似然估计或极大后验概率估计,其概率模型依赖于无法观测的隐变量. 经常用在ML与计算机视觉的数据聚类领域. EM应用:GMM混合高斯模型.聚类.HMM隐马尔科夫模型等. 一.Jesen不等式 对于凸函数(对于所有实数x,有f''(x)≥0).当x时向量时,如果其hessian矩阵H是半正定的(H≥0),那么f是凸函数.如果f…
机器学习十大算法之一:EM算法.能评得上十大之一,让人听起来觉得挺NB的.什么是NB啊,我们一般说某个人很NB,是因为他能解决一些别人解决不了的问题.神为什么是神,因为神能做很多人做不了的事.那么EM算法能解决什么问题呢?或者说EM算法是因为什么而来到这个世界上,还吸引了那么多世人的目光. 我希望自己能通俗地把它理解或者说明白,但是,EM这个问题感觉真的不太好用通俗的语言去说明白,因为它很简单,又很复杂.简单在于它的思想,简单在于其仅包含了两个步骤就能完成强大的功能,复杂在于它的数学推理涉及到比…
最大期望算法(Expectation-maximization algorithm,又译期望最大化算法)在统计中被用于寻找,依赖于不可观察的隐性变量的概率模型中,参数的最大似然估计. 在统计计算中,最大期望(EM)算法是在概率(probabilistic)模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variable).最大期望经常用在机器学习和计算机视觉的数据聚类(Data Clustering)领域. 最大期望算法经过两个步骤交替进行计…
不多说,直接上干货! 机器学习十大算法之一:EM算法(即期望最大化算法).能评得上十大之一,让人听起来觉得挺NB的.什么是NB啊,我们一般说某个人很NB,是因为他能解决一些别人解决不了的问题.神为什么是神,因为神能做很多人做不了的事.那么EM算法能解决什么问题呢?或者说EM算法是因为什么而来到这个世界上,还吸引了那么多世人的目光. 我希望自己能通俗地把它理解或者说明白,但是,EM这个问题感觉真的不太好用通俗的语言去说明白,因为它很简单,又很复杂.简单在于它的思想,简单在于其仅包含了两个步骤就能完…
在统计计算中,最大期望(EM,Expectation–Maximization)算法是在概率(probabilistic)模型中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variabl).最大期望经常用在机器学习和计算机视觉的数据集聚(Data Clustering)领域. 可以有一些比较形象的比喻说法把这个算法讲清楚.比如说食堂的大师傅炒了一份菜,要等分成两份给两个人吃,显然没有必要拿来天平一点一点的精确的去称分量,最简单的办法是先随意的把菜分到两个碗中,…
这个暂时还不太明白,先写一点明白的. EM:最大期望算法,属于基于模型的聚类算法.是对似然函数的进一步应用. 我们知道,当我们想要估计某个分布的未知值,可以使用样本结果来进行似然估计,进而求最大似然估计就可以估计出要求的参数. 但是有时候还会有未知参数,这样就不能使用极大似然估计.当然这个参数与我们要估计的参数是有关联的. 比如说调查 男生 女生身高的问题.身高肯定是服从高斯分布.以往我们可以通过对男生抽样进而求出高斯分布的参数,女生也是,但是如果我们只能知道某个人的高度,却不能知道他是男生或者…
      顶尖数据挖掘辅助教学套件 (TipDM-T6)           产  品  说  明  书 广州泰迪智能科技有限公司 版权所有 地址: 广州市经济技术开发区科学城232号 网址: http://www.tipdm.com 邮箱: services@tipdm.com 热线: 40068-40020 企业QQ:40068-40020 邮编: 510663 电话: (020)82039399 目  录 1                     引言.................…
    顶尖大数据挖掘实战平台 (TipDM-H8)           产  品  说  明  书 广州泰迪智能科技有限公司 版权所有 地址: 广州市经济技术开发区科学城232号 网址: http://www.tipdm.com 邮箱: services@tipdm.com 热线: 40068-40020 企业QQ:40068-40020 邮编: 510663 电话: (020)82039399 目  录 1                     引言....................…
机器学习 - 维基百科,自由的百科全书 https://zh.wikipedia.org/wiki/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0 机器学习是人工智能的一个分支.人工智能的研究历史有着一条从以“推理”为重点,到以“知识”为重点,再到以“学习”为重点的自然.清晰的脉络.显然,机器学习是实现人工智能的一个途径,即以机器学习为手段解决人工智能中的问题.机器学习在近30多年已发展为一门多领域交叉学科,涉及概率论.统计学.逼近论.凸分析.计算复杂性理论等多门学科.…
推荐系统: 1.基于内容的实现:KNN等 2.基于协同滤波(CF)实现:SVD → pLSA(从LSA发展而来,由SVD实现).LDA.GDBT SVD算是比较老的方法,后期演进的主题模型主要是pLSA和LDA.pLSA主要基于EM最大期望算法,而LDA主要基于Gibbs抽样算法,这个在下一篇文章<主题模型>里会详细介绍. 一.推荐系统 推荐系统实现主要分为两个方面:基于内容实现和基于协同滤波实现. 1.基于内容 不同人对不同电影评分这个例子,可以看做是一个普通回归(线性回归)问题,因此每部电…
[转载请注明出处]http://www.cnblogs.com/mashiqi 2014/11/18 更新.发现以前的公式(2)里有错误,现已改过来.由于这几天和Can讨论了EM算法,回头看我以前写的这篇博客的时候,就发现公式里面有一个错误(多了一个连加符号),现在改正过来了.经过和Can的讨论,我又认真思考了EM算法,发现以前确实是没有弄懂这个算法的本质的.加油,以后学习知识不要只停留在表面上,要有insight!!! 2014/5/19 本文公式编辑捉鸡,请知道怎么在博客园里高效编辑公式的朋…
在统计计算中,最大期望(EM,Expectation–Maximization)算法是在概率(probabilistic)模型中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variabl).最大期望经常用在机器学习和计算机视觉的数据集聚(Data Clustering)领域.最大期望算法经过两个步骤交替进行计算,第一步是计算期望(E),也就是将隐藏变量象能够观测到的一样包含在内从而计算最大似然的期望值:另外一步是最大化(M),也就是最大化在 E 步上找到的最大…
EM算法概述 (1)数学之美的作者吴军将EM算法称之为上帝的算法,EM算法也是大家公认的机器学习十大经典算法之一.EM是一种专门用于求解参数极大似然估计的迭代算法,具有良好的收敛性和每次迭代都能使似然函数值单调不减的优良性质.在统计机器学习.自然语言处理等领域应用非常广泛,许多统计学算法都是EM算法的体现,比如说隐含马尔科夫模型的训练方法Baum-Welch算法.最大熵模型的训练方法GIS算法.高斯混合模型EM算法.主题模型训练推理的pLSA方法,都是EM算法.甚至连聚类中的k-means算法,…
从决策树学习谈到贝叶斯分类算法.EM.HMM     引言 最近在面试中,除了基础 &  算法 & 项目之外,经常被问到或被要求介绍和描述下自己所知道的几种分类或聚类算法(当然,这完全不代表你将来的面试中会遇到此类问题,只是因为我的简历上写了句:熟悉常见的聚类 & 分类算法而已),而我向来恨对一个东西只知其皮毛而不得深入,故写一个有关数据挖掘十大算法的系列文章以作为自己备试之用,甚至以备将来常常回顾思考.行文杂乱,但侥幸若能对读者起到一点帮助,则幸甚至哉. 本文借鉴和参考了两本书,…
我希望自己能通俗地把它理解或者说明白,但是,EM这个问题感觉真的不太好用通俗的语言去说明白,因为它很简单,又很复杂.简单在于它的思想,简单在于其仅包含了两个步骤就能完成强大的功能,复杂在于它的数学推理涉及到比较繁杂的概率公式等.如果只讲简单的,就丢失了EM算法的精髓,如果只讲数学推理,又过于枯燥和生涩,但另一方面,想把两者结合起来也不是件容易的事.所以,我也没法期待我能把它讲得怎样.希望各位不吝指导. EM模型 在统计计算中,最大期望(EM)算法是在概率(probabilistic)模型中寻找参…
从决策树学习谈到贝叶斯分类算法.EM.HMM                (Machine Learning & Recommend Search交流新群:172114338) 引言 log0为0). 如果写代码实现熵的计算,则例如以下所看到的: //依据详细属性和值来计算熵 double ComputeEntropy(vector <vector <string> > remain_state, string attribute, string value,bool i…
EM算法 作者:樱花猪   摘要: 本文为七月算法(julyedu.com)12月机器学习第十次次课在线笔记.EM算法全称为Expectation Maximization Algorithm,既最大期望算法.它是一种迭代的算法,用于含有隐变量的概率参数模型的最大似然估计和极大后验概率估计.EM算法经常用于机器学习和机器视觉的聚类领域,是一个非常重要的算法.而EM算法本身从使用上来讲并不算难,但是如果需要真正的理解则需要许多知识的相互串联. 引言:      EM算法是机器学习十大经典算法之一.…
在统计计算中,最大期望(EM)算法是在概率(probabilistic)模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐藏变量(LatentVariable).最大期望经常用在机器学习和计算机视觉的数据聚类(DataClustering)领域.最大期望算法经过两个步骤交替进行计算,第一步是计算期望(E),利用对隐藏变量的现有估计值,计算其最大似然估计值:第二步是最大化(M),最大化在E步上求得的最大似然值来计算参数的值.M步上找到的参数估计值被用于下一个E步计算中…
摘要 EM算法全称为Expectation Maximization Algorithm,既最大期望算法.它是一种迭代的算法,用于含有隐变量的概率参数模型的最大似然估计和极大后验概率估计.EM算法经常用于机器学习和机器视觉的聚类领域,是一个非常重要的算法.而EM算法本身从使用上来讲并不算难,但是如果需要真正的理解则需要许多知识的相互串联. 引言 EM算法是机器学习十大经典算法之一.EM算法既简单有复杂,简单的在于他的思想而复杂则在于他的数学推理和复杂的概率公式.作为我这个新手来讲,决定先捡大的部…
在统计计算中,最大期望(EM)算法是在概率(probabilistic)模型中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variable).最大期望经常用在机器学习和计算机视觉的数据聚类(Data Clustering) 领域.最大期望算法经过两个步骤交替进行计算,第一步是计算期望(E),利用对隐藏变量的现有估计值,计算其最大似然估计值:第二步是最大化(M),最大 化在 E 步上求得的最大似然值来计算参数的值.M 步上找到的参数估计值被用于下一个 E 步计算…
最大期望算法:EM算法. 在统计计算中,最大期望算法(EM)是在概率模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐藏变量. 最大期望算法经过两个步骤交替进行计算: 第一步是计算期望(E),利用对隐藏变量的现有估计,计算其最大似然估计值: 第二步是最大化(M),最大化在E步上求得的最大似然值来计算参数的值. M步上找到的参数估计值被用于下一个E步计算中,这个过程不断交替进行. 总体来说,EM算法流程如下: 1.初始化分布参数 2.重复直到收敛: E步:估未知参数的…
最大期望算法(EM) K均值算法很easy(可參见之前公布的博文),相信读者都能够轻松地理解它. 但以下将要介绍的EM算法就要困难很多了.它与极大似然预计密切相关. 1 算法原理 最好还是从一个样例開始我们的讨论.如果如今有100个人的身高数据,并且这100条数据是随机抽取的. 一个常识性的看法是.男性身高满足一定的分布(比如正态分布),女性身高也满足一定的分布.但这两个分布的參数不同. 我们如今不仅不知道男女身高分布的參数,甚至不知道这100条数据哪些是来自男性.哪些是来自女性.这正符合聚类问…
一.简介 EM 的英文是 Expectation Maximization,所以 EM 算法也叫最大期望算法. 我们先看一个简单的场景:假设你炒了一份菜,想要把它平均分到两个碟子里,该怎么分? 很少有人用称对菜进行称重,再计算一半的分量进行平分.大部分人的方法是先分一部分到碟子 A 中,然后再把剩余的分到碟子 B 中,再来观察碟子 A 和 B 里的菜是否一样多,哪个多就匀一些到少的那个碟子里,然后再观察碟子 A 和 B 里的是否一样多--整个过程一直重复下去,直到份量不发生变化为止. 你能从这个…
1. 什么是EM算法 最大期望算法(Expectation-maximization algorithm,又译为期望最大化算法),是在概率模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐性变量. 最大期望算法经过两个步骤交替进行计算, 第一步是计算期望(E),利用对隐藏变量的现有估计值,计算其最大似然估计值: 第二步是最大化(M),最大化在E步上求得的最大似然值来计算参数的值.M步上找到的参数估计值被用于下一个E步计算中,这个过程不断交替进行. 极大似然估计用一句…
最大期望算法 EM算法的正式提出来自美国数学家Arthur Dempster.Nan Laird和Donald Rubin,其在1977年发表的研究对先前出现的作为特例的EM算法进行了总结并给出了标准算法的计算步骤,EM算法也由此被称为Dempster-Laird-Rubin算法.1983年,美国数学家吴建福(C.F. Jeff Wu)给出了EM算法在指数族分布以外的收敛性证明. MLE MLE就是利用已知的样本结果,反推最有可能(最大概率)导致这样结果的参数值 的计算过程.直白来讲,就是给定了…
GMM与EM算法的Python实现 高斯混合模型(GMM)是一种常用的聚类模型,通常我们利用最大期望算法(EM)对高斯混合模型中的参数进行估计. 1. 高斯混合模型(Gaussian Mixture models, GMM) 高斯混合模型(Gaussian Mixture Model,GMM)是一种软聚类模型. GMM也可以看作是K-means的推广,因为GMM不仅是考虑到了数据分布的均值,也考虑到了协方差.和K-means一样,我们需要提前确定簇的个数. GMM的基本假设为数据是由几个不同的高…
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习专题的第14篇文章,我们来聊聊大名鼎鼎的EM算法. EM算法的英文全称是Expectation-maximization algorithm,即最大期望算法,或者是期望最大化算法.EM算法号称是十大机器学习算法之一,听这个名头就知道它非同凡响.我看过许多博客和资料,但是少有资料能够将这个算法的来龙去脉以及推导的细节全部都讲清楚,所以我今天博览各家所长,试着尽可能地将它讲得清楚明白. 从本质上来说EM算法是最大似然估计方法的…
EM算法(Expectation-maximization),又称最大期望算法,是一种迭代算法,用于含有隐变量的概率模型参数的极大似然估计(或极大后验概率估计) 从定义可知,该算法是用来估计参数的,这里约定参数为  .既然是迭代算法,那么肯定有一个初始值,记为  ,然后再通过算法计算  通常,当模型的变量都是观测变量时,可以直接通过极大似然估计法,或者贝叶斯估计法估计模型参数.但是当模型包含隐变量时,就不能简单的使用这些估计方法 举个具体的栗子: 永远在你身后:Matplotlib输出动画实现K…