Kl 证明 凸函数】的更多相关文章

回到随机变量传输问题,假设传输中我们不知道具体 分布情况(unknown),我们用一个已知的分布 ,来模拟它,那么在这种情况下如果我们利用 尽可能高效的编码,那么我们平均需要多少额外的信息量来描述x呢.这称为相对熵,或者kl divergence. 利用凸函数的不等式性质(也利用了离散求和推广到连续积分)可以证明 因此KL表征了两个分布之间的关系,a measure of dissimilariy of p and q表示两个分布不相同的程度 来自 <http://www.cnblogs.com…
CMU凸优化笔记--凸集和凸函数 结束了一段时间的学习任务,于是打算做个总结.主要内容都是基于CMU的Ryan Tibshirani开设的Convex Optimization课程做的笔记.这里只摘了部分内容做了笔记,很感谢Ryan Tibshirani在官网中所作的课程内容开源.也很感谢韩龙飞在CMU凸优化课程中的中文笔记,我在其基础上做了大量的内容参考.才疏学浅,忘不吝赐教. 1.凸集合 1.1 基本概念 定义:给定一个集合$C \subseteq \mathbb{R}^n $,满足下列条件…
该来的总是要来的———————— 经典问题,石子合并. 对于 f[i][j]= min{f[i][k]+f[k+1][j]+w[i][j]} From 黑书 凸四边形不等式:w[a][c]+w[b][d]<=w[b][c]+w[a][d](a<b<c<d) 区间包含关系单调: w[b][c]<=w[a][d](a<b<c<d) 定理1:  如果w同时满足四边形不等式和决策单调性 ,则f也满足四边形不等式 定理2:  若f满足四边形不等式,则决策s满足 s[i…
1 KL散度 KL散度(Kullback–Leibler divergence) 定义如下: $D_{K L}=\sum\limits_{i=1}^{n} P\left(x_{i}\right) \times \log \left(\frac{P\left(x_{i}\right)}{Q\left(x_{i}\right)}\right)$ 目标:证明上式非负. 2 凸函数与凹函数 连续函数 $f(x)$ 的定义域为 $I$ ,如果对 $I$ 内任意两个实数 $x_{1}$ , $x_{2}$…
一.第一种理解 相对熵(relative entropy)又称为KL散度(Kullback–Leibler divergence,简称KLD),信息散度(information divergence),信息增益(information gain).  KL散度是两个概率分布P和Q差别的非对称性的度量. KL散度是用来度量使用基于Q的编码来编码来自P的样本平均所需的额外的比特个数. 典型情况下,P表示数据的真实分布,Q表示数据的理论分布,模型分布,或P的近似分布. 根据shannon的信息论,给定…
http://www.cnblogs.com/ywl925/p/3554502.html http://www.cnblogs.com/hxsyl/p/4910218.html http://blog.csdn.net/acdreamers/article/details/44657745 KL距离,是Kullback-Leibler差异(Kullback-Leibler Divergence)的简称,也叫做相对熵(Relative Entropy).它衡量的是相同事件空间里的两个概率分布的差异…
KL散度(Kullback-Leibler_divergence) 一. 概念 KL-divergence,俗称KL距离,常用来衡量两个概率分布的距离. 根据shannon的信息论,给定一个字符集的概率分布,我们可以设计一种编码,使得表示该字符集组成的字符串平均需要的比特数最少.假设这个字符集是X,对x∈X,其出现概率为P(x),那么其最优编码平均需要的比特数等于这个字符集的熵: H(X)=∑x∈XP(x)log[1/P(x)] 在同样的字符集上,假设存在另一个概率分布Q(X).如果用概率分布P…
浅谈KL散度 一.第一种理解 相对熵(relative entropy)又称为KL散度(Kullback–Leibler divergence,简称KLD),信息散度(information divergence),信息增益(information gain). KL散度是两个概率分布P和Q差别的非对称性的度量. KL散度是用来度量使用基于Q的编码来编码来自P的样本平均所需的额外的比特个数. 典型情况下,P表示数据的真实分布,Q表示数据的理论分布,模型分布,或P的近似分布. 根据shannon的…
信息熵 信息量和信息熵的概念最早是出现在通信理论中的,其概念最早是由信息论鼻祖香农在其经典著作<A Mathematical Theory of Communication>中提出的.如今,这些概念不仅仅是通信领域中的基础概念,也被广泛的应用到了其他的领域中,比如机器学习. 信息量用来度量一个信息的多少.和人们主观认识的信息的多少有些不同,这里信息的多少用信息的在一个语境中出现的概率来定义,并且和获取者对它的了解程度相关,概率越大认为它的信息量越小,概率越小认为它的信息量越大.用以下式子定义:…
最近做用户画像,用到了KL散度,发现效果还是不错的,现跟大家分享一下,为了文章的易读性,不具体讲公式的计算,主要讲应用,不过公式也不复杂,具体可以看链接. 首先先介绍一下KL散度是啥.KL散度全称Kullback–Leibler divergence,也称为相对熵,信息增益,它是度量两个概率分布P与Q之间差异的一种不对称度量,可以看做是概率分布P到目标概率Q之间距离.一般情况下,P表示数据的真是分布,Q表示数据的理论分布,也可以理解为影响P分布的一种因素.计算公式为: DKL(P||Q) =ΣP…