1.前言 目前实时计算的业务场景越来越多,实时计算引擎技术及生态也越来越成熟.以Flink和Spark为首的实时计算引擎,成为实时计算场景的重点考虑对象.那么,今天就来聊一聊基于Kafka的实时计算引擎如何选择?Flink or Spark? 2.为何需要实时计算? 根据IBM的统计报告显示,过去两年内,当今世界上90%的数据产生源于新设备.传感器以及技术的出现,数据增长率也会为此加速.而从技术上将,这意味着大数据领域,处理这些数据将变得更加复杂和具有挑战性.例如移动应用广告.欺诈检测.出租车预…
1.前言 目前实时计算的业务场景越来越多,实时计算引擎技术及生态也越来越成熟.以Flink和Spark为首的实时计算引擎,成为实时计算场景的重点考虑对象.那么,今天就来聊一聊基于Kafka的实时计算引擎如何选择?Flink or Spark? 2.为何需要实时计算? 根据IBM的统计报告显示,过去两年内,当今世界上90%的数据产生源于新设备.传感器以及技术的出现,数据增长率也会为此加速.而从技术上将,这意味着大数据领域,处理这些数据将变得更加复杂和具有挑战性.例如移动应用广告.欺诈检测.出租车预…
前言 在上一篇文章 你公司到底需不需要引入实时计算引擎? 中我讲解了日常中常见的实时需求,然后分析了这些需求的实现方式,接着对比了实时计算和离线计算.随着这些年大数据的飞速发展,也出现了不少计算的框架(Hadoop.Storm.Spark.Flink).在网上有人将大数据计算引擎的发展分为四个阶段. 第一代:Hadoop 承载的 MapReduce 第二代:支持 DAG(有向无环图)框架的计算引擎 Tez 和 Oozie,主要还是批处理任务 第三代:支持 Job 内部的 DAG(有向无环图),以…
alibaba/jstorm JStorm 是一个分布式实时计算引擎. JStorm 是一个类似Hadoop MapReduce的系统, 用户按照指定的接口实现一个任务,然后将这个任务递交给JStorm系统,Jstorm将这个任务跑起来,并且按7 * 24小时运行起来,一旦中间一个worker 发生意外故障, 调度器立即分配一个新的worker替换这个失效的worker. 因此,从应用的角度,JStorm 应用是一种遵守某种编程规范的分布式应用.从系统角度, JStorm一套类似MapReduc…
大致架构 * 每个应用实例部署一个日志agent * agent实时将日志发送到kafka * storm实时计算日志 * storm计算结果保存到hbase storm消费kafka 创建实时计算项目并引入storm和kafka相关的依赖 <dependency> <groupId>org.apache.storm</groupId> <artifactId>storm-core</artifactId> <version>1.0.…
虽然SparkStreaming已经停止更新,Spark的重点也放到了 Structured Streaming ,但由于Spark版本过低或者其他技术选型问题,可能还是会选择SparkStreaming. SparkStreaming对于时间窗口,事件时间虽然支撑较少,但还是可以满足部分的实时计算场景的,SparkStreaming资料较多,这里也做一个简单介绍. 一. 什么是Spark Streaming Spark Streaming在当时是为了与当时的Apache Storm竞争,也让S…
基于 Flink 1.9 讲解的专栏,涉及入门.概念.原理.实战.性能调优.系统案例的讲解. 专栏介绍 扫码下面专栏二维码可以订阅该专栏 首发地址:http://www.54tianzhisheng.cn/2019/11/15/flink-in-action/ 专栏地址:https://gitbook.cn/gitchat/column/5dad4a20669f843a1a37cb4f 专栏亮点 全网首个使用最新版本 Flink 1.9 进行内容讲解(该版本更新很大,架构功能都有更新),领跑于目…
package com.gm.hive.SparkHive; import java.util.Arrays; import java.util.Collection; import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.Properties; import org.apache.kafka.clients.consumer.ConsumerRecord; import o…
当我们写完一个比较复杂的Topology之后,倘若直接提交到服务器上运行,难免会有很多问题,如何进行本地的调试Topology,是我们非常关心的问题.我们依然以WordCount作为代码示例. 首先,必须调整main函数. 当main函数中,设定薇本地模式后,即可直接如调试Java应用程序一样,调试相应的代码,由于本地调试中,Computing会运行一个Local Cluster,因此在调试的时候,一样要添加对zookeeper的引用,如下: 但是,在最终打包的到服务器上运行的时候,无须将zoo…
WordCount是很多分布式计算中,最常用的例子,例如Hadoop.Storm,Iveely Computing也不例外.明白了WordCount在Iveely Computing上的运行原理,就很容易写出新的分布式程序.上一篇中已经知道了如何部署Iveely Computing以及提交任务,现在我们将深入WordCount的代码.        一.代码结构 图3-1 从图3-1中,可以看出,类WordCount中,有两个子类WordInput.WordOutput,以及一个主方法,Word…
      在Github中下载代码和二进制程序中,您都会看到一个bin\iveely computing目录,里面即是Iveely Computing的运行库.              以前总是有很多网友不知道怎么安装部署,现在我利用命令脚本并给予步骤编号,以告诉您怎么安装部署.当然在安装部署前,请确定您本地已经有了java 1.8的运行环境.本次修改不同于以往的安装部署步骤,是一次针对安装部署的改进.        zookeeper 是必要的协调服务.        master 是Iv…
5月15日 阿里云DataWorks正式推出Stream Studio,正式为用户提供大数据的实时计算能力,同时标志着DataWorks成为离线.实时双计算领域的数据中台. 据介绍,Stream Studio基于阿里巴巴Flink实时计算引擎,支持DAG和SQL双模式开发流计算作业,并支持DAG与SQL互转:支持Function Studio在线开发UDF并一键发布:支持线上数据采集与本地调试:支持作业运维和智能诊断:极大地降低了流计算作业开发门槛,提高了开发效率.通过DataWorks已有的数…
一.概述 Apache Kafka 发展至今,已经是一个很成熟的消息队列组件了,也是大数据生态圈中不可或缺的一员.Apache Kafka 社区非常的活跃,通过社区成员不断的贡献代码和迭代项目,使得 Apache Kafka 功能越发丰富.性能越发稳定,成为企业大数据技术架构解决方案中重要的一环. Apache Kafka 作为一个热门消息队列中间件,具备高效可靠的消息处理能力,且拥有非常广泛的应用领域.那么,今天就来聊一聊基于 Kafka 的实时数仓在搜索的实践应用. 二.为什么需要 Kafk…
随着大数据的发展,人们对大数据的处理要求也越来越高,原有的批处理框架MapReduce适合离线计算,却无法满足实时性要求较高的业务,如实时推荐.用户行为分析等. Spark Streaming是建立在Spark上的实时计算框架,通过它提供的丰富的API.基于内存的高速执行引擎,用户可以结合流式.批处理和交互试查询应用.本文将详细介绍Spark Streaming实时计算框架的原理与特点.适用场景. Spark Streaming实时计算框架 Spark是一个类似于MapReduce的分布式计算框…
文 | 潘国庆 携程大数据平台实时计算平台负责人 本文主要从携程大数据平台概况.架构设计及实现.在实现当中踩坑及填坑的过程.实时计算领域详细的应用场景,以及未来规划五个方面阐述携程实时计算平台架构与实践,希望对需要构建实时数据平台的公司和同学有所借鉴. 一.携程大数据平台之总体架构 携程大数据平台结构分为三层: 应用层:开发平台Zeus(分为调度系统.Datax数据传输系统.主数据系统.数据质量系统).查询平台(ArtNova报表系统.Adhoc查询).机器学习(基于tensorflow.spa…
Stream Studio是DataWorks旗下重磅推出的全新子产品.已于2019年4月18日正式对外开放使用.Stream Studi是一站式流计算开发平台,基于阿里巴巴实时计算引擎Flink构建,集可视化拖拽DAG和SQL两种开发模式,支持DAG与SQL互相转换,通过可视化拖拽就可以轻松实现流计算作业开发,适用于实时ETL.实时报表.实时大屏.监控预警以及各类实时在线系统等应用场景. Stream Studio的推出意味着DataWorks正式对外提供实时计算能力,进入到流.批全覆盖的大数…
在不断满足当前企业客户数据集成需求的同时,DataPipeline也基于Kafka Connect 框架做了很多非常重要的提升. 1. 系统架构层面. DataPipeline引入DataPipeline Manager的概念,主要用于优化Source和Sink的全局化生命周期管理.当任务出现异常时,可以实现对目的端和全局生命周期的管理.例如,处理源端到目的端读取速率不匹配以及暂停等状态的协同. 为了加强系统的健壮性,我们把Connector任务的参数保存在ZooKeeper中,方便任务重启后读…
导读:传统ETL方案让企业难以承受数据集成之重,基于Kafka Connect构建的新型实时数据集成平台被寄予厚望. 在4月21日的Kafka Beijing Meetup第四场活动上,DataPipeline CTO陈肃分享了DataPipeline是如何基于Kafka Connect框架构建实时数据集成平台的应用实践.以下内容是基于现场录音整理的文字,供大家参考. 什么是数据集成?最简单的应用场景就是:一个数据源,一个数据目的地,数据目的地可以一个数据仓库,把关系型数据库的数据同步到数据仓库…
1. Flink Flink介绍: Flink 是一个针对流数据和批数据的分布式处理引擎.它主要是由 Java 代码实现.目前主要还是依靠开源社区的贡献而发展.对 Flink 而言,其所要处理的主要场景就是流数据,批数据只是流数据的一个极限特例而已.再换句话说,Flink 会把所有任务当成流来处理,这也是其最大的特点.Flink 可以支持本地的快速迭代,以及一些环形的迭代任务. Flink的特性: Flink是个分布式流处理开源框架: 1>. 即使数据源是无序的或者晚到达的数据,也能保持结果准确…
本篇文章内容来自2016年TOP100summit Microsoft资深产品经理邢国冬的案例分享.编辑:Cynthia 邢国冬(Tony Xing):Microsoft资深产品经理.负责微软应用与服务集团的大数据平台构建,数据产品与服务. 导读:微软的ASG (应用与服务集团)包含Bing,.Office,.Skype.每天产生多达5 PB以上数据,如何构建一个高扩展性的data audit服务来保证这样量级的数据完整性和实时性非常具有挑战性.本文将介绍微软ASG大数据团队如何利用Kafka.…
基于Spark通用计算平台,可以很好地扩展各种计算类型的应用,尤其是Spark提供了内建的计算库支持,像Spark Streaming.Spark SQL.MLlib.GraphX,这些内建库都提供了高级抽象,可以用非常简洁的代码实现复杂的计算逻辑.这也得益于Scala编程语言的简洁性.这里,我们基于1.3.0版本的Spark搭建了计算平台,实现基于Spark Streaming的实时计算.我们的应用场景是分析用户使用手机App的行为,描述如下所示: 手机客户端会收集用户的行为事件(我们以点击事…
随着金融业数字化程度进一步加深,互联网垂直电商.消费金融等领域与人们生活的深度融合,数字科技在安全风险控制上已经成为了重要的基石.如何主动防范化解风险,建立智能化的实时风险监测预警体系,加速业务模式转型,提升价值创造能力,对于银行.第三方支付以及互联网等企业的风控作用尤为重要. 人工智能加持下的"Dinsight实时风控引擎" 现今金融风控技术的应用场景已经渗透到众多场景中,例如信用借贷.保险.支付.供应链金融等诸多场景,而其中最为典型和广泛的应用领域是信贷领域和保险领域.而在后疫情时…
1. 完成的场景 在很多大数据场景下,要求数据形成数据流的形式进行计算和存储.上篇博客介绍了Flink消费Kafka数据实现Wordcount计算,这篇博客需要完成的是将实时计算的结果写到redis.当kafka从其他端获取数据立刻到Flink计算,Flink计算完后结果写到Redis,整个过程就像流水一样形成了数据流的处理 2. 代码 添加第三方依赖 <dependencies> <!-- https://mvnrepository.com/artifact/org.apache.fl…
背景 Kafka实时记录从数据采集工具Flume或业务系统实时接口收集数据,并作为消息缓冲组件为上游实时计算框架提供可靠数据支撑,Spark 1.3版本后支持两种整合Kafka机制(Receiver-based Approach 和 Direct Approach),具体细节请参考文章最后官方文档链接,数据存储使用HBase 实现思路 实现Kafka消息生产者模拟器 Spark Streaming采用Direct Approach方式实时获取Kafka中数据 Spark Streaming对数据…
系列随笔: (总览)基于商品属性的相似商品推荐算法 (一)基于商品属性的相似商品推荐算法--整体框架及处理流程 (二)基于商品属性的相似商品推荐算法--Flink SQL实时计算实现商品的隐式评分 (三)基于商品属性的相似商品推荐算法--批量处理商品属性,得到属性前缀及完整属性字符串 (四)基于商品属性的相似商品推荐算法--推荐与评分高的商品属性相似的商品 (五)基于商品属性的相似商品推荐算法--算法调优及其他 2020.04.15  补充:协同过滤推荐算法.pptx 提取码:4tds 注:如果…
说明:本文为<Flink大数据项目实战>学习笔记,想通过视频系统学习Flink这个最火爆的大数据计算框架的同学,推荐学习课程: Flink大数据项目实战:http://t.cn/EJtKhaz 新一代Flink计算引擎 (1) Flink概述 目前开源大数据计算引擎有很多的选择,比如流处理有Storm.Samza.Flink.Spark等,批处理有Spark.Hive.Pig.Flink等.既支持流处理又支持批处理的计算引擎只有Apache Flink和Apache Spark. 虽然Spar…
​ 此文选自Google大神Tyler Akidau的另一篇文章:Streaming 102: The world beyond batch ​ 欢迎回来!如果您错过了我以前的帖子,Streaming-大数据的未来,强烈建议您先花时间阅读那篇文章. 简要回顾一下,上一篇我们介绍了Streaming,批量与流式计算,正确性与推理时间的工具,数据处理模式,事件事件与处理时间,窗口化. 在这篇文章中,我想进一步关注上次的数据处理模式,但更详细. ​ 这里会用到一些Google Cloud Datafl…
作者介绍 倪增光,饿了么BDI-大数据平台研发高级技术经理,曾先后就职于PPTV.唯品会.15年加入饿了么,组建数据架构team,整体负责离线平台.实时平台.平台工具的开发和运维,先后经历了唯品会.饿了么数据平台从无到有到不断完善的过程.   一.背景 饿了么BDI-大数据平台研发团队目前共有20人左右,主要负责离线&实时 Infra 和平台工具开发,其中包括20+组件的开发和维护.2K+ Servers 运维及数据平台周边衍生工具研发&维护.离线 Infra 和平台工具这一块对外分享的比…
众所周知,Apache Flink(以下简称 Flink)最早诞生于欧洲,2014 年由其创始团队捐赠给 Apache 基金会.如同其他诞生之初的项目,它新鲜,它开源,它适应了快速转的世界中更重视的速度与灵活性. 大数据时代对人类的数据驾驭能力提出了新的挑战,Flink 的诞生为企业用户获得更为快速.准确的计算能力提供了前所未有的空间与潜力.作为公认的新一代大数据计算引擎,Flink 究竟以何魅力成为阿里.腾讯.滴滴.美团.字节跳动.Netflix.Lyft 等国内外知名公司建设流计算平台的首选…
随着移动互联网.云计算.物联网和大数据技术的广泛应用,现代社会已经迈入全新的大数据时代.数据的爆炸式增长以及价值的扩大化,将对企业未来的发展产生深远的影响,数据将成为企业的核心资产.如何处理大数据,挖掘大数据的价值,让大数据为企业的发展保驾护航,将是未来信息技术发展道路上关注的重点. 传统的数据处理方式通常是将数据导入至专门的数据分析工具中,这样会面临两个问题:1.如果源数据非常大时,往往数据的移动就要花费较长时间.2.传统的数据处理工具往往是单机模型,面对海量数据时,数据处理的时间也是一个很大…