题目链接 https://www.mina.moe/archives/7598 //285ms 3.53MB #include <cstdio> #include <cctype> #include <cstring> #include <algorithm> //#define gc() getchar() #define MAXIN 300000 #define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,M…
一个数学不好的菜鸡的快速沃尔什变换(FWT)学习笔记 曾经某个下午我以为我会了FWT,结果现在一丁点也想不起来了--看来"学"完新东西不经常做题不写博客,就白学了 = = 我没啥智商 ,网上的FWT博客我大多看不懂,下面这篇博客是留给我我再次忘记FWT时看的,所以像我一样的没智商选手应该也能看懂!有智商选手更能看懂咯! (写得非常匆忙,如有任何错误请在评论区指正!TAT) 什么是FWT FWT是用来快速做位运算卷积的.位运算卷积是什么?给出两个数组\(A\)和\(B\)(长度相等且是2…
To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格式: 第一行包含三个整数N.M.P,分别表示该数列数字的个数.操作的总个数和模数. 第二行包含N个用空格分隔的整数,其中第i个数字表示数列第i项的初始值. 接下来M行每行包含3或4个整数,表示一个操作,具体如下: 操作1: 格式:1 x y k 含义:将区间[x,y]内每个数乘上k 操作2: 格式:…
快速沃尔什变换\(FWT\) 是一种可以快速完成集合卷积的算法. 什么是集合卷积啊? 集合卷积就是在集合运算下的卷积.比如一般而言我们算的卷积都是\(C_i=\sum_{j+k=i}A_j*B_k\),而集合卷积计算的就是\(C_i=\sum_{j\otimes k=i}A_j*B_k\),其中\(\otimes\)是一种集合运算,可以是与.或.异或. 类似于快速傅里叶变换\(FFT\),\(FWT\)也需要寻求一种变换方式\(FWT(A)\),使\(FWT(C)=FWT(A)*FWT(B)\)…
也许更好的阅读体验 本文主要内容是对武汉市第二中学吕凯风同学的论文<集合幂级数的性质与应用及其快速算法>的理解 定义 集合幂级数 为了更方便的研究集合的卷积,引入集合幂级数的概念 集合幂级数也是形式幂级数的一种,只是集合的一种表现形式,无需考虑收敛或发散的含义 定义一个集合 \(S\) 的集合幂级数为 \(f\) ,那么我们就可以把集合 \(S\) 表示为如下形式 \(\begin{aligned}f=\sum _{T\subseteq S}f_{T}\cdot x^{T}\end{align…
[学习笔鸡]快速沃尔什变换FWT OR的FWT 快速解决: \[ C[i]=\sum_{j|k=i} A[j]B[k] \] FWT使得我们 \[ FWT(C)=FWT(A)*FWT(B) \] 其中\(*\)是点积,就是对应位置乘起来. 而对于\(orFWT\), \[ C'[i]=FWT(C)[i]=\sum_{j\subseteq i}C[j] \] 那么证明一下: \[ \begin{array} &C'[i]&=\sum_{j\subseteq i} C[j] \\ &=…
最近在学FWT,抽点时间出来把这个算法总结一下. 快速沃尔什变换(Fast Walsh-Hadamard Transform),简称FWT.是快速完成集合卷积运算的一种算法. 主要功能是求:,其中为集合运算符. 就像FFT一样,FWT是对数组的一种变换,我们称数组X的变换为FWT(X). 所以FWT的核心思想是: 为了求得C=A★B,我们瞎搞搞出一个变换FWT(X), 使得FWT(C)=FWT(A)  FWT(B),然后根据FWT(C)求得C. (其中★表示卷积运算,表示将数组对应下标的数相乘的…
To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果你不知道这是什么意思也不要问,去百度搜[kmp算法]学习一下就知道了. 输入输出格式 输入格式: 第一行为一个字符串,即为s1(仅包含大写字母) 第二行为一个字符串,即为s2(仅包含大写字母) 输出格式: 若干行,每行包含一个整数,表示s2在s1中出现的位置 接下来1行,包括length(s2)个整…
为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类对树的边进行轻重划分的操作,这样做的目的是为了减少某些链上的修改.查询等操作的复杂度. 目前总共有三类:重链剖分,实链剖分和并不常见的长链剖分 重链剖分 实际上我们经常讲的树剖,就是重链剖分的常用称呼. 对于每个点,选择最大的子树,将这条连边划分为重边,而连向其他子树的边划分为轻边. 若干重边连接在…
题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #include <cmath> #include <cctype> #include <cstdio> #include <algorithm> #define gc() getchar() const int N=1e6+5; const double PI=acos(…
〇.前言 之前看到异或就担心是 FWT,然后才开始想别的. 这次学了 FWT 以后,以后判断应该就很快了吧? 参考资料 FWT 详解 知识点 by neither_nor 集训队论文 2015 集合幂级数的性质与应用及其快速算法 by 吕凯风 一.FWT 是什么 FWT 是快速沃尔什变换.它和快速傅里叶变换一样,原本都用于物理中的频谱分析. 但是由于它可分治的特点,在算法竞赛中常被用来计算位运算卷积. 二.FWT 能干什么 它可以在 \(O(n\log n)\) 的时间复杂度内由数组 \(a,b…
感觉快速沃尔什变换和快速傅里叶变换有很大的区别啊orz 不是很明白为什么位运算也可以叫做卷积(或许不应该叫卷积吧) 我是看 http://blog.csdn.net/liangzhaoyang1/article/details/52819835 里的快速沃尔什变换 这里说一下自己的理解吧,快速傅里叶变换是计算卷积的,就是∑f(x)*g(n-x)这种 快速沃尔什变换也是计算∑f(x)*g(y) ,但这里是计算所有的满足x^y = n(卷积是计算x+y=n)的和 当然,异或也可以换成&,|这些运算符…
[题目链接] https://www.luogu.org/problem/P3808 [题意] 给定n个模式串和1个文本串,求有多少个模式串在文本串里出现过. [题解] 不再介绍基础知识了,就是裸的模板题,直接贴上来. [代码] #include<queue> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; ; ; queue < int >…
题目传送门 -------------------------------------- 过年在家无聊补一下这周做的几道AC自动机的模板题 sol:AC自动机,还是要解决跳fail边产生的重复访问,但是这次用last边已经不行了,只能拿76分.我们把跳fail边的过程放到串扫描完之后一次性进行. AC自动机 #include <bits/stdc++.h> using namespace std; typedef long long LL; typedef pair<int, int&g…
证明均来自xht37 的洛谷博客 作用 在 \(OI\) 中,\(FWT\) 是用于解决对下标进行位运算卷积问题的方法. \(c_{i}=\sum_{i=j \oplus k} a_{j} b_{k}\) 其中 \(\oplus\) 是二元位运算中的一种. 实现 \(or\) 运算 构造 \(fwt[a]_i = \sum_{j|i=i} a_j\) 则 \(\begin{aligned} fwt[a] \times fwt[b] &= \left(\sum_{j|i=i} a_j\right)…
题目链接:洛谷.BZOJ2179 //将乘数拆成 a0*10^n + a1*10^(n-1) + ... + a_n-1的形式 //可以发现多项式乘法就模拟了竖式乘法 所以用FFT即可 注意处理进位 //n位*n位最多就只有2n位了 //putchar的速度..还是快的 #include <cmath> #include <cstdio> #include <cctype> #include <algorithm> #define gc() getchar(…
题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\)成立的最小正整数\(n\)为\(a\)模\(p\)的阶,记作\(\delta_p(a)\). 例:\(\delta_7(2)=3\). 原根 设\(p\)是正整数,\(a\)是整数,若\(\delta_p(a)=\varphi(m)\),则称\(a\)为模\(p\)的一个原根. 从另一方面来说,若\(g…
题目传送门 题目描述 暴力枚举/SPFA/Bellman-ford/奇怪的贪心/超神搜索 输入输出格式 输入格式: 第一行一个正整数T表示数据组数,对于每组数据: 第一行两个正整数N M,表示图有N个顶点,M条边 接下来M行,每行三个整数a b w,表示a->b有一条权值为w的边(若w<0则为单向,否则双向) 输出格式: 共T行.对于每组数据,存在负环则输出一行"YE5"(不含引号),否则输出一行"N0"(不含引号). 输入输出样例 输入样例#1: 2…
洛谷 P3806 传送门 这个点分治都不用减掉子树里的了,直接搞就行了. 注意第63行 if(qu[k]>=buf[j]) 不能不写,也不能写成>. 因为这个WA了半天...... 如果memset清空ex数组显然是会T的,所以开一个bef用来记录需要清空哪个地方. #include<cstdio> #include<cstring> #include<algorithm> using namespace std; int n,m; ],to[],nx[],…
点此看题面 大致题意: 有两个长度为\(2^n\)的数组\(A,B\),且\(C_i=\sum_{j⊕k==i}A_jB_k\)分别求出当\(⊕\)为\(or,and,xor\)时的\(C\)数组. \(FWT\) 这是一道\(FWT\)的板子题. 由于\(FWT\)太难了,所以我只会背板子(甚至连板子都不会背). 可见代码. 代码 #include<bits/stdc++.h> #define Tp template<typename Ty> #define Ts templat…
FWT求解的是一类问题:\( a[i] = \sum\limits_{j\bigoplus k=i}^{} b[j]*c[k] \) 其中,\( \bigoplus \) 可以是 or,and,xor 三种问题的解决思路都是对多项式 \( a \) 构造一个 \( a' \),令 \( a' = b' * c' \): 那么只需要把 \( b \) 变换成 \( b' \),\( c \) 变换成 \( c' \),然后乘出 \( a' \),再逆变换得到 \( a \): 下面问题就变成如何快…
题意 题目链接 Sol 背板子背板子 #include<bits/stdc++.h> using namespace std; const int MAXN = (1 << 17) + 10, mod = 998244353, inv2 = 499122177; inline int read() { char c = getchar(); int x = 0, f = 1; while(c < '0' || c > '9') {if(c == '-') f = -1;…
#include <bits/stdc++.h> using namespace std; #define rep(i,a,n) for (int i=a;i<n;i++) #define per(i,a,n) for (int i=n-1;i>=a;i--) #define pb push_back #define mp make_pair #define all(x) (x).begin(),(x).end() #define fi first #define se secon…
这是我第一道独立做出来的FWT的题目,所以写篇随笔纪念一下. (这还要纪念,我太弱了) 题目链接: BZOJ 题目大意:两人玩nim游戏(多堆石子,每次可以从其中一堆取任意多个,不能操作就输).$T$ 组数据,现在问如果 $n$ 堆石子,每堆石子个数都是不超过 $m$ 的素数,有多少种不同的石子序列使得先手没有必胜策略,答案对 $10^9+7$ 取模.(石子堆顺序不同也算不同) $1\leq T\leq 80,1\leq n\leq 10^9,1\leq m\leq 5\times 10^4$.…
CGZ大佬提醒我,我要是再不更博客可就连一月一更的频率也没有了... emmm,正好做了一道有点意思的题,就拿出来充数吧=.= 题意 一棵树,有 $ n (n\leq50000) $ 个节点,每个点都有一个颜色,共有 $ k(k\leq10) $ 种颜色,问有多少条路径可以遍历到所有 $ k $ 种颜色?(一条路径交换起点终点就算两条哦) 做法 事实证明,连我都能不看题解想出来的题果然都是水题qwq 我是从CJ的xzyxzy大佬上的博客上看到这道题的,所以就理所当然用FWT做了...然后才发现网…
FWT 是处理位运算卷积的有效工具…… 原理……不懂,但背板子很简单,在这贴博客是为了放个模板,免得到时候忘记. 其中0为或卷积,1为与卷积,2为异或卷积…… void FWT(long long a[],int type,int fwt){ ;i<bit;i<<=) ;j<bit;j+=i<<) for(int k=j;k<i+j;k++){ long long x=a[k],y=a[k+i]; ){ )a[k+i]=(x+y)%mod; )a[k]=(x+y)…
题目链接:https://www.luogu.org/problemnew/show/P1226 题意:求b^p % m之后的结果 题解:快速幂模板 代码: #include<iostream> #include<algorithm> #include<cmath> #include<cstdio> using namespace std; #define ll long long ll b,p,mod; ll qpow( ll a,ll b){ ll re…
后面的图片将会告诉: 如何推出FWT的公式tf 如何推出FWT的逆公式utf 用的是设系数,求系数的方法! ========================================================= 以一种高度思考 http://picks.logdown.com/posts/179290-fast-walsh-hadamard-transform 加和乘的定义 大小为1时的公式 https://blog.csdn.net/zhshrs/article/details/5…
题面 题解 这是一道FWT和子集卷积的应用题. 我们先设 cnt[x] 表示 Si = x 的 i 的数量,那么 这里的Nab[x]指满足条件的 Sa|Sb=x.Sa&Sb=0 的(a,b)二元组数量,这个可以通过子集卷积快速求出,复杂度为 然后又设 那么就把答案简化为了 我们可以再次简化,设 这里的Nde[x]指满足条件的 Sd^Se=x 的(d,e)二元组数量,用FWT卷积求出,那么如果 就可以把答案简化为 最后考虑枚举  ,设答案为 所以我们就把它转化为了卷积的形式,用FWT这道题就完了.…
题目描述 如题,给出一个网络图,以及其源点和汇点,求出其网络最大流. 输入输出格式 输入格式: 第一行包含四个正整数N.M.S.T,分别表示点的个数.有向边的个数.源点序号.汇点序号. 接下来M行每行包含三个正整数ui.vi.wi,表示第i条有向边从ui出发,到达vi,边权为wi(即该边最大流量为wi) 输出格式: 一行,包含一个正整数,即为该网络的最大流. 输入输出样例 输入样例#1: 复制 4 5 4 3 4 2 30 4 3 20 2 3 20 2 1 30 1 3 40 输出样例#1:…