caffe 中 python 数据层】的更多相关文章

caffe中大多数层用C++写成. 但是对于自己数据的输入要写对应的输入层,比如你要去图像中的一部分,不能用LMDB,或者你的label 需要特殊的标记. 这时候就需要用python 写一个输入层. 如在fcn 的voc_layers.py 中 有两个类: VOCSegDataLayer SBDDSegDataLayer 分别包含:setup,reshape,forward, backward, load_image, load_label. 不需要backward 没有参数更新. import…
caffe添加python数据层(ImageData) 在caffe中添加自定义层时,必须要实现这四个函数,在C++中是(LayerSetUp,Reshape,Forward_cpu,Backward_cpu),在python 中是(setup,reshape,forward_cpu,backword_cpu). prototxt layer { name: "data" type: "Python" top: "data" top: "…
下面是基于我自己的接口,我是用来分类一维数据的,可能不具通用性: (前提,你已经编译了caffe的python的接口) 添加 caffe塻块的搜索路径,当我们import caffe时,可以找到. 对于这一步,一般我们都会把 cafffe 模块的搜索路经永久地加到先加$PYTHONPATH中去,如可以把 export PYTHONPATH=/path/to/caffe/python:$PYTHONPATH 写到 .bashrc中.而下面的做法,只是临时的做法哦: improt sys #sys.…
caffe的数据层layer中再载入数据时,会先要对数据进行预处理.一般处理的方式有两种: 1. 使用均值处理 transform_param { mirror: true crop_size: mean_file: "/media/mn_mean.binaryproto" } data_param { source: "/medi/mn_train_db" batch_size: backend: LMDB } 2.采用将数据乘以 1/255 使其值在0-1之间.…
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/6015990.html BatchNorm具体网上搜索. caffe中batchNorm层是通过BatchNorm+Scale实现的,但是默认没有bias.torch中的BatchNorm层使用函数SpatialBatchNormalization实现,该函数中有weight和bias. 如下代码: local net = nn.Sequential() net:add(nn.SpatialBatch…
caffe.cpp中的train函数内声明了一个类型为Solver类的智能指针solver: // Train / Finetune a model. int train() { -- shared_ptr<caffe::Solver<float> > solver(caffe::SolverRegistry<float>::CreateSolver(solver_param)); -- } 之后调用Solver类的构造函数,在构造函数内执行了 Init(param)函…
下载caffe-local,解压缩; 修改makefile.config:我是将cuudn注释掉,去掉cpu_only的注释; make all make test(其中local_test出错,将文件中gpu部分注释掉即可) make runtest 将python路径在.bashrc中更改: export PYTHONPATH=/home/crw/caffe-local/python:$PYTHONPATH source .bashrc 或者直接vi .bashrc,在文件中更改; make…
今天来仔细讲一下卷基层和全连接层训练参数个数如何确定的问题.我们以Mnist为例,首先贴出网络配置文件: name: "LeNet" layer { name: "mnist" type: "Data" top: "data" top: "label" data_param { source: "examples/mnist/mnist-train-leveldb" backend: L…
caffe官网上的example中的例子,如果环境配对都能跑出来,接下来跑Notobook Example中的程序,都是python写的,这些程序会让你对如何使用caffe解决问题有个初步的了解(http://www.cnblogs.com/dupuleng/articles/4242983.html) 即然用到python,那么就要确定安装了python,并且pycaffe编译通过,还要安装一些依赖项: sudo apt-get install python-numpy python-scip…
在训练一个小的分类网络时,发现加上BatchNorm层之后的检索效果相对于之前,效果会有提升,因此将该网络结构记录在这里,供以后查阅使用: 添加该层之前: layer { name: "conv1" type: "Convolution" bottom: "data" top: "conv1" param { lr_mult: decay_mult: } param { lr_mult: decay_mult: } convo…