Spark强大的函数扩展功能】的更多相关文章

在数据分析领域中,没有人能预见所有的数据运算,以至于将它们都内置好,一切准备完好,用户只需要考虑用,万事大吉.扩展性是一个平台的生存之本,一个封闭的平台如何能够拥抱变化?在对数据进行分析时,无论是算法也好,分析逻辑也罢,最好的重用单位自然还是:函数. 故而,对于一个大数据处理平台而言,倘若不能支持函数的扩展,确乎是不可想象的.Spark首先是一个开源框架,当我们发现一些函数具有通用的性质,自然可以考虑contribute给社区,直接加入到Spark的源代码中.我们欣喜地看到随着Spark版本的演…
有时自己的业务需要自己实现spark的分区函数 以下代码是实现一个自定义spark分区的demo 实现的功能是根据key值的最后一位数字,写到不同的文件 例如: 10写入到part-00000 11写入到part-00001 . . . 19写入到part-00009 自定义分区: import org.apache.spark.{Partitioner, SparkContext, SparkConf} //自定义分区类,需继承Partitioner类 class UsridPartition…
Spark远程调试函数 1.sendInfo 该函数用于分布式程序的调试,非常方便,在spark的rdd操作中嵌入sendInfo,启动nc服务器后,可以收集到所有需要的运行时信息,该函数可以捕获host.进程id.线程名称等主要的信息. 2.函数实现 def sendInfo(obj: Object, m: String, param: String) = { import java.net.InetAddress import java.lang.management.ManagementF…
Spark SQL 自定义函数类型 一.spark读取数据 二.自定义函数结构 三.附上长长的各种pom 一.spark读取数据 前段时间一直在研究GeoMesa下的Spark JTS,Spark JTS支持用户自定义函数,然后有一份数据,读取文件: package com.geomesa.spark.SparkCore import org.apache.spark.sql.SparkSession import org.apache.spark.sql.types.{ArrayType, D…
在Spark中有许多聚类操作是基于combineByKey的,例如group那个家族的操作等.所以combineByKey这个函数也是比较重要,所以下午花了点时间看来下这个函数.也参考了http://www.tuicool.com/articles/miueaqv这篇博客. 先看下combineByKey定义: /**    * Generic function to combine the elements for each key using a custom set of aggregat…
在Spark中,也支持Hive中的自定义函数.自定义函数大致可以分为三种: UDF(User-Defined-Function),即最基本的自定义函数,类似to_char,to_date等 UDAF(User- Defined Aggregation Funcation),用户自定义聚合函数,类似在group by之后使用的sum,avg等 UDTF(User-Defined Table-Generating Functions),用户自定义生成函数,有点像stream里面的flatMap 本篇…
import org.apache.spark.sql.SparkSession import org.apache.spark.sql.functions._ object Test2 { def main(args: Array[String]): Unit = { val spark = SparkSession .builder() .appName("Spark SQL basic example") .config("spark.some.config.optio…
UDAF = USER DEFINED AGGREGATION FUNCTION Spark sql提供了丰富的内置函数供猿友们使用,辣为何还要用户自定义函数呢?实际的业务场景可能很复杂,内置函数hold不住,所以Spark sql提供了可扩展的内置函数接口:哥们,你的业务太变态了,我满足不了你,自己按照我的规范去定义一个sql函数,该怎么折腾就怎么折腾! 例如,MySQL数据库中有一张task表,共两个字段taskid (任务ID)与taskParam(JSON格式的任务请求参数).简单起见,…
一.简单聚合 1.1 数据准备 // 需要导入spark sql内置的函数包 import org.apache.spark.sql.functions._ val spark = SparkSession.builder().appName("aggregations").master("local[2]").getOrCreate() val empDF = spark.read.json("/usr/file/json/emp.json")…
一.简单聚合 1.1 数据准备 // 需要导入 spark sql 内置的函数包 import org.apache.spark.sql.functions._ val spark = SparkSession.builder().appName("aggregations").master("local[2]").getOrCreate() val empDF = spark.read.json("/usr/file/json/emp.json"…