通过将分布式随机梯度下降(SGD)中的稠密更新替换成稀疏更新可以显著提高训练速度.当大多数更新接近于0时,梯度更新会出现正偏差,因此我们将99%最小更新(绝对值)映射为零,然后使用该稀疏矩阵替换原来的稠密矩阵.该方法可以于梯度量化相结合来进一步压缩梯度.我们探索了不同的的参数配置并将它们应用到神经机器翻译和MNIST图像分类任务中.大多数参数配置适用于MNIST,而不同的配置会降低更复杂的翻译任务的收敛速度.我们的实验说明在不损失精度和BLEU的情况下,可以在MNIST任务上获得49%的加速比,…
在求解算法的模型函数时,常用到梯度下降(Gradient Descent)和最小二乘法,下面讨论梯度下降的线性模型(linear model). 1.问题引入 给定一组训练集合(training set)yi,i = 1,2,...,m,引入学习算法参数(parameters of learning algorithm)θ1,θ2,.....,θn,构造假设函数(hypothesis function)h(x)如下: 定义x0 = 1,则假设函数h(x)也可以记为以下形式: 这里xi(i = 1…
原文地址:An overview of gradient descent optimization algorithms An overview of gradient descent optimization algorithms Note: If you are looking for a review paper, this blog post is also available as an article on arXiv. Update 15.06.2017: Added deriva…
An overview of gradient descent optimization algorithms Table of contents: Gradient descent variantsChallenges Batch gradient descent Stochastic gradient descent Mini-batch gradient descent Gradient descent optimization algorithms Momentum Nesterov a…
Logistic Regression and Gradient Descent Logistic regression is an excellent tool to know for classification problems. Classification problems are problems where you are trying to classify observations into groups. To make our examples more concrete,…
一.从Multinomial Logistic模型说起 1.Multinomial Logistic 令为维输入向量; 为输出label;(一共k类); 为模型参数向量: Multinomial Logistic模型是指下面这种形式: 其中: 例如:时,输出label为0和1,有: 2.Maximum Likelihood Estimate and Maximum a Posteriori Estimate (1).Maximum Likelihood Estimate 假设有数据集,为了训练一…
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share 项目合作联系QQ:231469242 http://scikit-learn.org/stable/modules/sgd.html Stochasti…
深度学习课程笔记(四)Gradient Descent 梯度下降算法 2017.10.06 材料来自:http://speech.ee.ntu.edu.tw/~tlkagk/courses_MLDS17.html    我们知道在神经网络中,我们需要求解的是一个最小化的问题,即:最小化 loss function. 假设我们给定一组初始的参数 $\theta$,那么我们可以算出在当前参数下,这个loss是多少,即表示了这个参数到底有多不好. 然后我们利用上述式子来调整参数,其中梯度可以用▽的形式…
这篇论文最早是一篇2016年1月16日发表在Sebastian Ruder的博客.本文主要工作是对这篇论文与李宏毅课程相关的核心部分进行翻译. 论文全文翻译: An overview of gradient descent optimization algorithms 梯度下降优化算法概述 0. Abstract 摘要: Gradient descent optimization algorithms, while increasingly popular, are often used as…
由于良好的可扩展性,随机梯度下降(SGD)的并行实现是最近研究的热点.实现并行化SGD的关键障碍就是节点间梯度更新时的高带宽开销.因此,研究者们提出了一些启发式的梯度压缩方法,使得节点间只传输压缩后的梯度.尽管这些启发式方法在实践中很有效,但它们有时并不会收敛. 本文提出了量化SGD(Quantization SGD,QSGD),它是一类具有收敛保证且在实践中性能良好的压缩模式.QSGD允许用户平滑得权衡通信带宽和收敛时间:节点可以在每轮迭代时调整发送的比特数,代价可能是更高的方差.这种权衡是固…