0 引言 Marvin是普林斯顿视觉实验室(PrincetonVision)于2015年提出的轻量化GPU加速的多维深度学习网络框架.该框架采用纯c/c++编写,除了cuda和cudnn以外,不依赖其他库,编译非常简单,功能也相当强大,用于深度神经网络的快速原型开发非常好用.缺点在于没有提供API,所有的代码集中在marvin.hpp一个文件中,读起来非常困难.好在提供了视频格式的PPT,对框架和代码进行解读.下面将基于官网视频/ppt对该框架进行介绍. 1 相关链接 不想看我翻译的同学可以直接…
基本环境 建议严格按照版本来 - Windows 10 - Visual Studio 2013 - Matlab R2016b - Anaconda - CUDA 8.0.44 - cuDNN v4 1. 安装CUDA 8.0 安装完后,程序会自动地添加一个CUDA_PATH的环境变量: 2. 下载cuDNN 下载前需要在Developer网上注册一个号,简单填一填基本材料即可. 下完就是一个压缩包,也没办法安装的,压缩包里面有三个文件,分别是bin,include,lib,把它们解压,得到一…
这一期我们来介绍如何在Windows上安装CUDA,使得对图像数据处理的速度大大加快,在正式的下载与安装之前,首先一起学习一下预导知识,让大家知道为什么使用GPU可以加速对图像的处理和计算,以及自己的电脑是否可以使用GPU加速. ​写在前面: 在深度学习中,我们常常要对图像数据进行处理和计算,而处理器CPU因为需要处理的事情多,并不能满足我们对图像处理和计算速度的要求,显卡GPU就是来帮助CPU来解决这个问题的,GPU特别擅长处理图像数据,而CUDA(Compute Unified Device…
运行时替换函数对 golang 这类静态语言来说并不是件容易的事情,语言层面的不支持导致只能从机器码层面做些奇怪 hack,往往艰难,但如能成功,那挣脱牢笼带来的成就感,想想就让人兴奋. gohook gohook 实现了对函数的暴力拦截,无论是普通函数,还是成员函数都可以强行拦截替换,并支持回调原来的旧函数,效果如下(更多使用方式/接口等请参考 github 上的单元测试[1],以及 example 目录下的使用示例):                                    …
tushare: http://tushare.waditu.com/index.html 为什么是Python? 就跟javascript在web领域无可撼动的地位一样,Python也已经在金融量化投资领域占据了重要位置,从各个业务链条都能找到相应的框架实现.我们拿上一篇文章的图再来看看,在量化投资(证券和比特币)开源项目里,全球star数排名前10位里面,有7个是Python实现的.从数据获取到策略回测再到交易,覆盖了整个业务链. 而全球注册用户数最多的商业量化平台Uqer优矿,也同样是基于…
深度学习“引擎”之争:GPU加速还是专属神经网络芯片? 深度学习(Deep Learning)在这两年风靡全球,大数据和高性能计算平台的推动作用功不可没,可谓深度学习的“燃料”和“引擎”,GPU则是引擎的引擎,基本所有的深度学习计算平台都采用GPU加速.同时,深度学习已成为GPU提供商NVIDIA的一个新的战略方向,以及3月份的GTC 2015的绝对主角. 那么,GPU用于深度学习的最新进展如何?这些进展对深度学习框架有哪些影响?深度学习开发者应该如何发挥GPU的潜力?GPU与深度学习结合的前景…
windows 10 64bit下安装Tensorflow+Keras+VS2015+CUDA8.0 GPU加速 原文见于:http://www.jianshu.com/p/c245d46d43f0 作者 xushiluo 关注 2016.12.21 20:32* 字数 3096 阅读 12108评论 18喜欢 19 写在前面的话 2016年11月29日,Google Brain 工程师团队宣布在 TensorFlow 0.12 中加入初步的 Windows 支持.但是目前只支持64位,而且Py…
开发环境介绍 在SuperVessel云上,我们为大家免费提供当前火热的caffe深度学习开发环境.SuperVessel的Caffe有如下优点: 1) 免去了繁琐的Caffe环境的安装配置,即申请即使用. 2) 集成了SuperVessel先进的GPU虚拟化技术,POWER8,GPU与cuDNN库三重加速的Caffe,极大的节约您的模型训练时间. 3) 环境集成了一些优秀的Caffe开源模型,如图片识别与人脸识别模型,帮助您更快的学习理解Caffe,助力您搭建有趣的深度学习应用. Caffe深…
关于Haclon使用GPU加速的代码实例 read_image(Image, 'T20170902014819_58_2_1.bmp') *没有加加速并行处理 count_seconds(T1) to by rotate_image(Image, Image1, , 'constant') endfor count_seconds(T2) Time1:=(T2-T1)* stop() *以下两种加速只能选一种 *GPU加速,支持GPU加速的算子Halcon10只有56个 query_availa…
原文地址:http://www.jianshu.com/p/c245d46d43f0 写在前面的话 2016年11月29日,Google Brain 工程师团队宣布在 TensorFlow 0.12 中加入初步的 Windows 支持.但是目前只支持64位,而且Python版本为3.5版本,需要CUDA 8.0 .之前Tensorflow对windows的支持并不好,导致如果需要使用它,需要转移到Linux平台,或者使用Cygwin什么的,总之挺麻烦,现在好了.麻烦事google帮我们解决了.感…
GPU加速库AmgX AmgX提供了一条简单的途径来加速NVIDIA GPU上的核心求解器技术.AmgX可以为模拟的计算密集型线性求解器部分提供高达10倍的加速度,特别适合于隐式非结构化方法. 它是一个高性能,最新的库,并包括灵活的求解器组合系统,使用户可以轻松构造复杂的嵌套求解器和预处理器. 查看以下案例研究和白皮书: AmgX:工业应用的多网格加速线性求解器 AmgX V1.0:使用经典AMG启用储层模拟 AmgX:一个用于GPU加速的代数多重网格和预处理迭代方法的库 立即开始使用AmgX…
前言 GDAL库中提供的gdalwarp支持各种高性能的图像重采样算法,图像重采样算法广泛应用于图像校正,重投影,裁切,镶嵌等算法中,而且对于这些算法来说,计算坐标变换的运算量是相当少的,绝大部分运算量都在图像的重采样算法中,尤其是三次卷积采样以及更高级的重采样算法来说,运算量会成倍的增加,所以提升这些算法的处理效率优先是提高重采样的效率.由于GPU的多核心使得目前对于GPU的并行处理非常热,同时也能大幅度的提升处理速度.基于上述原因,GDALWARP也提供了基于OPENCL的GPU加速,之前在…
NVIDIA Jarvis:一个GPU加速对话人工智能应用的框架 Introducing NVIDIA Jarvis: A Framework for GPU-Accelerated Conversational AI Applications 实时会话人工智能是一项复杂而富有挑战性的任务.为了允许与最终用户进行实时.自然的交互,模型需要在300毫秒内完成计算.自然的相互作用具有挑战性,需要多模态的感觉整合.模型管道也很复杂,需要跨多个服务进行协调: 自动语音识别(ASR) 自然语言理解(NLU…
xgboost的可以参考:https://xgboost.readthedocs.io/en/latest/gpu/index.html 整体看加速5-6倍的样子. Gradient Boosting, Decision Trees and XGBoost with CUDA By Rory Mitchell | September 11, 2017  Tags: CUDA, Gradient Boosting, machine learning and AI, XGBoost   Gradie…
  需求   流水线图像扫描采集控件(带模拟数据测试)性能需求  1.需至少满足可1ms接收一次列数据,而不丢包(接收后可不必立马显示)  2.图片刷新率可达30HZ:限制需求  1.图片高度最小只能缩小为控件在界面显的高度  2.控件在界面显示的大小可任意调整,图片可自适应控件大小改变:  3.控件的数据接收和界面刷新均不能阻塞UI进程补充说明  1.从下位机接收到一列数据  2.转换成8位/24位深度的图像数据(灰度8位数据),兼容24位(RGB数据)  3.传入一列数据更新一列  4.当传…
本系列会介绍OpenStack 企业私有云的几个需求: 自动扩展(Auto-scaling)支持 多租户和租户隔离 (multi-tenancy and tenancy isolation) 混合云(Hybrid cloud)支持 主流硬件支持.云快速交付 和 SLA 保证 大规模扩展性支持 私有云外围环境支持(包括支持CDN .商业SDN控制器.防火墙和VPN/专线等) 良好的可使用性(用户和运维 Dashboard 等) 向上扩展性(PaaS 和 SaaS 等支撑) 企业数据中心IT环境支持…
1 首先要开启GPU加速就要安装cuda.安装cuda,首先要安装英伟达的驱动.ubuntu有自带的开源驱动,首先要禁用nouveau.这儿要注意,虚拟机不能安装ubuntu驱动.VMWare下显卡只是模拟出的一块显卡,如果你安装cuda,会卡在ubuntu图形界面无法登陆系统.或者最终安装了cuda也会检测不到显卡设备,所以首先我们需要装双系统. 2 win10下安装ubuntu.win10,win8,是使用uefi引导的.不同于win7等老版本.所以不可以使用EasyBCD. 首先我们对C盘…
最近由于论文需要,急需搭建Tensorflow环境,16年底当时Tensorflow版本号还没有过1,我曾按照手册搭建过CPU版本.目前,1.7算是比较新的版本了(也可以从源码编译1.8版本的Tensorflow). 安装步骤: 不能急于求成,安装任何东西前都应该先阅读用户手册与FAQ,弄清软件依赖与安装步骤.对于Tensorflow来说,官网有时上不去,建议关注Tensorflow的GitHub(https://github.com/tensorflow/tensorflow),GitHub上…
如今大数据和机器学习已经有了很大的结合,在机器学习里面,因为计算迭代的时间可能会很长,开发人员一般会选择使用 GPU.FPGA 或 TPU 来加速计算.在 Apache Hadoop 3.1 版本里面已经开始内置原生支持 GPU 和 FPGA 了.作为通用计算引擎的 Spark 肯定也不甘落后,来自 Databricks.NVIDIA.Google 以及阿里巴巴的工程师们正在为 Apache Spark 添加原生的 GPU 调度支持,该方案填补了 Spark 在 GPU 资源的任务调度方面的空白…
参考文章: https://www.w3cplus.com/css3/introduction-to-hardware-acceleration-css-animations.html http://blog.csdn.net/hsany330/article/details/50925260 用CSS3动画替代JS模拟动画的好处: 不占用JS主线程: 可以利用硬件加速: 浏览器可对动画做优化(元素不可见时不动画减少对FPS影响) 下面让我们来看一个动画效果,在该动画中包含了几个堆叠在一起的球并…
基于GPU加速的三维空间分析 标签:supermap地理信息系统gisit 文:李凯 随着三维GIS 的快速发展和应用普及,三维空间分析技术以其应用中的实用性成为当前GIS技术研究的热点领域.面对日益庞大的三维数据处理现状,为满足GIS各行业对专业化三维空间分析的实用性需求,SuperMap GIS 7C(2015)提供了丰富且实用的基于GPU图形硬件加速的三维空间分析功能,做到“即时分析.即时完成”的超强性能,具体包括通视分析.可视域分析.动态可视域分析.阴影率统计分析.天际线分析.剖面线分析…
此文已由作者袁申授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. 有数的数据大屏可以在一块屏幕上展示若干张不同的图表,以炫酷的方式展示各种业务数据.其中有些图表使用CSS实现了饼图轮播.地图标记点闪烁等动画,然而在一张大屏上同时显示了许多张图表时,持续的动画效果有时会出现掉帧.卡顿的情况,需要对动画性能进行优化.本文简单介绍了chrome浏览器性能分析工具和CSS动画使用GPU加速进行性能优化的解决方案. 浏览器渲染流程 这是浏览器渲染引擎的处理过程: 接收到文档后,渲染…
在安装之前,请确保你的显卡是NVIDIA的,并且是以下型号,否则不能进行gpu加速,右键我的电脑--管理--设备管理器--显示适配器.另外如果你的电脑是windows7,安装教程也是一样的,不过根据keras中文文档的建议,还是win10比较适合. 系统:windows10企业版2016 x64位(msdn下载的,系统激活用的是kms工具) 环境:python2.7 软件:Anaconda2,VS2010,cuda,cudnn(加速库) (废话:最近实验室刚配置一台高配的机器,所以我不得不重新搭…
Logo 项目介绍: GPUImage是Brad Larson在github托管的开源项目. GPUImage是一个基于GPU图像和视频处理的开源iOS框架,提供各种各样的图像处理滤镜,并且支持照相机和摄像机的实时滤镜: 基于GPU的图像加速,因此可以加速对实时摄像头视频.电影以及image的滤镜和其它效果处理,并且能够自定义图像滤镜.另外, GPUImage支持ARC. 使用GPUImage处理图片比Core Image更简单,只需要将过滤器赋给图片对象即可,不用考虑context或者设备等其…
Numba:高性能计算的高生产率 在这篇文章中,笔者将向你介绍一个来自Anaconda的Python编译器Numba,它可以在CUDA-capable GPU或多核cpu上编译Python代码.Python通常不是一种编译语言,你可能想知道为什么要使用Python编译器.答案当然是:运行本地编译的代码要比运行动态的.解译的代码快很多倍.Numba允许你为Python函数指定类型签名,从而在运行时启用编译(这就是“Just-in-Time”,即时,也可以说JIT编译).Numba动态编译代码的能力…
0704-使用GPU加速_cuda 目录 一.CPU 和 GPU 数据相互转换 二.使用 GPU 的注意事项 三.设置默认 GPU 四.GPU 之间的切换 pytorch完整教程目录:https://www.cnblogs.com/nickchen121/p/14662511.html 一.CPU 和 GPU 数据相互转换 在 torch 中以下数据结构分为 CPU 和 GPU 两个版本: Tensor Variable(包括 Parameter) nn.Module(包括常用的 layer.l…
AI解决方案:边缘计算和GPU加速平台 一.适用于边缘 AI 的解决方案 AI 在边缘蓬勃发展.AI 和云原生应用程序.物联网及其数十亿的传感器以及 5G 网络现已使得在边缘大规模部署 AI 成为可能.但它需要一个可扩展的加速平台,能够实时推动决策,并让各个行业都能为行动点(商店.制造工厂.医院和智慧城市)提供自动化智能.这将人.企业和加速服务融合在一起,从而使世界变得"更小". 更紧密. 适用于各行各业的边缘 AI 解决方案 卓越购物体验 借助 AI 驱动的见解,各地的大型零售商可让…
GPU加速计算 NVIDIA A100 Tensor Core GPU 可针对 AI.数据分析和高性能计算 (HPC),在各种规模上实现出色的加速,应对极其严峻的计算挑战.作为 NVIDIA 数据中心平台的引擎,A100 可以高效扩展,系统中可以集成数千个  A100 GPU,也可以利用 NVIDIA 多实例 GPU (MIG) 技术将每个 A100 划分割为七个独立的 GPU 实例,以加速各种规模的工作负载.第三代 Tensor Core 技术为各种工作负载的更多精度水平提供加速支持,缩短获取…
GPU-加速数据科学工作流程 GPU-ACCELERATE YOUR DATA SCIENCE WORKFLOWS 传统上,数据科学工作流程是缓慢而繁琐的,依赖于cpu来加载.过滤和操作数据,训练和部署模型.gpu大大降低了基础设施成本,并为使用RAPIDS的端到端数据科学工作流提供了卓越的性能 开源软件库.GPU加速数据科学在笔记本电脑.数据中心.边缘和云端随处可见. ApacheSpark3.0是GPU加速的RAPIDS ApacheSpark3.0是Spark的第一个版本,它为分析和人工智…
构建可扩展的GPU加速应用程序(NVIDIA HPC) 研究人员.科学家和开发人员正在通过加速NVIDIA GPU上的高性能计算(HPC)应用来推进科学发展,NVIDIA GPU具有处理当今最具挑战性的科学问题的计算能力.从计算科学到人工智能,GPU加速应用正在带来突破性的科学发现.流行的语言如C.C++.FORTRAN和Python正被用来开发.优化和部署这些应用程序. 面向HPC的GPU程序设计 NVIDIA GPU可以编程得很像CPU.从替换GPU优化的数学库开始.使用标准C++并行算法和…