信号处理之DFT、IDFT】的更多相关文章

一.DFT之前言部分 由于matlab已提供了内部函数来计算DFT.IDFT,我们只需要会调用fft.ifft函数就行: 二.函数说明: fft(x):计算N点的DFT.N是序列x的长度,即N=length(x): fft(x,L):计算L点的DFT.若L<N,则将原序列x截短为L点序列,再计算其L点的DFT:若L>N,则将原序列x补0至L点,然后通过计算其L点DFT. ifft(X):计算N点的IDFT.N是序列x的长度,即N=length(X). ifft(X,L):计算L点的IDFT.若…
Function (函数名) Use (函数用处) add 矩阵加法,A+B的更高级形式,支持mask scaleAdd 矩阵加法,一个带有缩放因子dst(I) = scale * src1(I) + src2(I) addWeighted 矩阵加法,两个带有缩放因子dst(I) = saturate(src1(I) * alpha + src2(I) * beta + gamma) subtract 矩阵减法,A-B的更高级形式,支持mask multiply 矩阵逐元素乘法,同Mat::mu…
写在前面 由于上一篇总结的版面限制,特开此文来记录 \(OI\) 中多项式类数学相关的问题. 该文启发于Miskcoo的博客,甚至一些地方直接引用,在此特别说明:若文章中出现错误,烦请告知. 感谢你的造访. 前置技能 多项式相关 形同 \(P(X)=a_0+a_1X+a_2X^2+\cdots+a_nX^n\) 的形式幂级数 \(P(X)\) 称为多项式.其中 \(\{a_i|i\in[0,n]\}\) 为多项式的系数: \(n\) 表示多项式的次数. 多项式的系数表示 对于 \(n\) 次多项…
模拟考某题一开始由于校内OJ太慢直接拆系数FFT跑不过 后来被神仙婊了一顿之后发现复杂度写炸了改了改随便过 模版题:任意模数NTT 三模数NTT 常数巨大,跑的极慢 拆系数FFT 原理是对于两个多项式$ P=\sum\limits_{i=0}^{n-1}P_ix^i \ \ Q=\sum\limits_{i=0}^{m-1}Q_ix^i$ 直接$ FFT$计算会发现值域达到$ 10^{23}$会炸精度 设 $ A=\sum\limits_{i=0}^{n-1}(P_i>>15)x^i \ \…
前言 众所周知,这两个东西都是用来算多项式乘法的. 对于这种常人思维难以理解的东西,就少些理解,多背板子吧! 因此只总结一下思路和代码,什么概念和推式子就靠巨佬们吧 推荐自为风月马前卒巨佬的概念和定理都非常到位的总结 推荐ppl巨佬的简明易懂的总结 FFT 多项式乘法的蹊径--点值表示法 一般我们把两个长度为\(n\)的多项式乘起来,就类似于做竖式乘法,一位一位地乘再加到对应位上,是\(O(n^2)\)的 如何优化?直接看是没有思路的,只好另辟蹊径了. 多项式除了我们常用的系数表示法\(y=a_…
最近重新学了下卷积,简单总结一下,不涉及细节内容: 1.FFT 朴素求法:$Coefficient-O(n^2)-CoefficientResult$ FFT:$Coefficient-O(nlogn)-Dot-O(n)-DotResult-O(nlogn)-CoefficientResult$ 其中系数到点值的转化称为$DFT(离散傅里叶变换)$,而点值到系数的转为称为$IDFT(傅里叶逆变换)$ 原本朴素的直接带入$n$个值的$DFT$和直接使用拉格朗日插值公式的$IDFT$的复杂度仍为$O…
一.矩阵Mat I,img,I1,I2,dst,A,B; double k,alpha; Scalar s; //注意Mat的行列号是从0开始的 //定义矩阵a,b,c Mat a,b,c; //生成三行四列的全一矩阵 CV_64F表示精度 a=Mat::ones(,,CV_64F); //a=mat::zeros(3,4,CV_64F);为生成全0 //把矩阵a复制给矩阵b 注意不能用b=a b=a.clone(); //矩阵a每一个元素乘以2 a=a.mul(); //矩阵b每一个元素乘以4…
目录 写在前面 前置技能 多项式相关 多项式的系数表示 多项式的点值表示 复数相关 复数的意义 复数的基本运算 单位根 代码相关 多项式乘法 快速傅里叶变换 DFT IDFT 算法实现 递归实现 迭代实现 快速数论变换 原根 算法实现 模数任意的解决方案 应用 快速卷积 多项式求逆 基本概念 求解方法 算法实现 求第二类斯特林数 第二类斯特林数 \(\text{NTT}\) 优化 快速沃尔什变换 \(xor\) 卷积 结论(三种卷积求法) 正向 \(\text{tf}\) 逆向 \(\text{…
1.Splay (Tyvj1728) #include <bits/stdc++.h> using namespace std; ,INF=<<; ],sz[MAXN],cnt[MAXN],val[MAXN],f[MAXN],tot=; void pushup(int x) {sz[x]=sz[ch[x][]]+sz[ch[x][]]+cnt[x];} void Rotate(int x) { ]); ch[z][y==ch[z][]]=x;f[x]=z; ch[y][k]=ch[…
大力推荐博客: 傅里叶变换(FFT)学习笔记 一.多项式乘法: 我们要明白的是: FFT利用分治,处理多项式乘法,达到O(nlogn)的复杂度.(虽然常数大) FFT=DFT+IDFT DFT: 本质是把多项式的系数表达转化为点值表达.因为点值表达,y可以直接相乘.点值表达下相乘的复杂度是O(n)的. 我们分别对两个多项式求x为$\omega_n^i$时的y值. 然后可以O(n)求出乘积多项式x为$\omega_n^i$时的y值. 求法: 把F(x)奇偶分类. $FL(x)=a_0+a_2x+.…