吴恩达(Andrew Ng)机器学习课程:课程主页 由于博客编辑器有些不顺手,所有的课程笔记将全部以手写照片形式上传.有机会将在之后上传课程中各个ML算法实现的Octave版本. Linear Regression with One Variable Linear Algebra Review Linear Regression with Multiple Variables Octave/Matlab Tutorial…
Support Vector Machines Unsupervised Learning Dimensionality Reduction…
Neural Networks: Learning Advice for Applying Machine Learning Machine Learning System Design…
Anomaly Detection Recommender Systems Large Scale Machine Learning…
Logistic Regression Regularization Neural Networks: Representation…
参考资料: 吴恩达教授机器学习课程 机器学习课程中文笔记 Week2 一. 多变量线性回归(Linear Regression with Multiple Variables) 多变量就时当一个example里有n个特征的情况,将n个特征统一到一个matrix里去看作整体. 多变量线性回归还是先出cost function,然后用梯度下降算法/正规方程法使cost function最小化 特征的选择 多变量线性回归中有很多特征,选择合适的特征很重要,下面是常见的可用特征: training se…
参考资料: 吴恩达教授机器学习课程 机器学习课程中文笔记 Week 1 一. 引言 机器学习模型可分为监督学习Superviese learning(每个数据集给出了正确的值)和无监督学习Unsupervised learning(数据集只有特征,没有对应正确的值) 机器学习处理的问题可以分为Regression回归问题(结果是real-valued output连续的值)和Classification问题 (结果是discrete-valued离散的值) 二. 单变量线性回归(Linear R…
监督学习(supervised learning) 假设我们有一个数据集(dataset),给出居住面积和房价的关系如下: 我们以居住面积为横坐标,房价为纵坐标,组成数据点,如(2104, 400),并把这些数据点描到坐标系中,如下: 由这些数据,我们怎么才能预测(predict)其他房价呢?其中房价作为居住面积的函数. 为了方便描述,我们用x(i)表示输入变量(即居住面积),也叫做输入特征(features):同时,用y(i)表示输出(即房价),也叫做目标(target)变量.有序对   (x…
一.逻辑回归问题(分类问题) 生活中存在着许多分类问题,如判断邮件是否为垃圾邮件:判断肿瘤是恶性还是良性等.机器学习中逻辑回归便是解决分类问题的一种方法.二分类:通常表示为yϵ{0,1},0:"Negative Class",1:"Possitive Class". 逻辑回归的预测函数表达式hθ(x)(hθ(x)>=0 && hθ(x)<=1): 其中g(z)被称为逻辑函数或者Sigmiod函数,其函数图形如下: 理解预测函数hθ(x)的…
一.多变量线性回归问题(linear regression with multiple variables) 搭建环境OctaveWindows的安装包可由此链接获取:https://ftp.gnu.org/gnu/octave/windows/,可以选择一个比较新的版本进行安装,本人win10操作系统,安装版本4.2.1,没有任何问题.注意不要安装4.0.0这个版本.当然安装MATLAB也是可以的,我两个软件都安装了,在本课程中只使用Octave就已经足够用了! 符号标记:n(样本的特征数/属…