这玩意用了很多次,但每次用还是容易混淆,今天来总结mark一下~~~ 1. numpy.random.rand(d0,d1,...,dn) 生成一个[0,1)之间的随机数或N维数组 np.random.rand(2) #生成两个[0,1)之间的数 [0.6555729 0.76240372] np.random.rand(2,2) #生成2行*2列的矩阵 [[0.58360206 0.91619225] [0.78203671 0.06754087]] 2. numpy.random.randn…
1.numpy.random.rand() 用法是:numpy.random.rand(d0,d1,…dn) 以给定的形状创建一个数组,并在数组中加入在[0,1]之间均匀分布的随机样本. 用法及实现: >>> np.random.rand(3,2) array([[ 0.14022471, 0.96360618], #random [ 0.37601032, 0.25528411], #random [ 0.49313049, 0.94909878]]) #random >>…
numpy中有一些常用的用来产生随机数的函数,randn()和rand()就属于这其中. numpy.random.randn(d0, d1, …, dn)是从标准正态分布中返回一个或多个样本值. numpy.random.rand(d0, d1, …, dn)的随机样本位于[0, 1)之间. [code] import numpy as np arr1 = np.random.randn(2,4) print(arr1) print('*****************************…
1 numpy.random.rand() (1)numpy.random.rand(d0,d1,…,dn) rand函数根据给定维度生成[0,1)之间的数据,包含0,不包含1 dn表格每个维度 返回值为指定维度的array (2) print(np.random.rand(,))生成一个2行4列的0到1之间的数组 [[0.16965512 0.97445517 0.51992353 0.73377611] [0.91446815 0.65995296 0.67720307 0.34809015…
numpy中有一些常用的用来产生随机数的函数,randn()和rand()就属于这其中. numpy.random.randn(d0, d1, …, dn)是从标准正态分布中返回一个或多个样本值. numpy.random.rand(d0, d1, …, dn)的随机样本位于[0, 1)之间.…
numpy.random.rand numpy.random.rand(d0, d1, ..., dn) Random values in a given shape. Create an array of the given shape and populate it with random samples from a uniform distribution over [0, 1). Parameters: d0, d1, ..., dn : int, optional The dimen…
numpy.random.rand(d0,d1,...,dn ) 给定形状中的随机值. 创建一个给定形状的数组,并用统一分布的随机样本填充它.[0, 1) 参数: d0,d1,...,dn:int,可选 返回数组的维度应该都是正数.如果没有给出参数,则返回单个Python浮点数. 返回: 出:ndarray,形状(d0, d1, ..., dn) 随机值. 也可以看看 random 笔记 这是一个方便的功能.如果您想要一个接口将形状元组作为第一个参数,请参阅np.random.random_sa…
(1)np.random.randn()函数 语法: np.random.randn(d0,d1,d2……dn) 1)当函数括号内没有参数时,则返回一个浮点数: 2)当函数括号内有一个参数时,则返回秩为1的数组,不能表示向量和矩阵: 3)当函数括号内有两个及以上参数时,则返回对应维度的数组,能表示向量或矩阵: 4)np.random.standard_normal()函数与np.random.randn()类似,但是np.random.standard_normal()的输入参数为元组(tupl…
本文转载自:https://blog.csdn.net/u010758410/article/details/71799142 numpy中有一些常用的用来产生随机数的函数,randn()和rand()就属于这其中. numpy.random.randn(d0, d1, …, dn)是从标准正态分布中返回一个或多个样本值. numpy.random.rand(d0, d1, …, dn)的随机样本位于[0, 1)中. 代码: import numpy as np arr1 = np.random…
转自: https://blog.csdn.net/u010758410/article/details/71799142 numpy中有一些常用的用来产生随机数的函数,randn()和rand()就属于这其中. numpy.random.randn(d0, d1, …, dn)是从标准正态分布中返回一个或多个样本值. numpy.random.rand(d0, d1, …, dn)的随机样本位于[0, 1)中. 代码: import numpy as np arr1 = np.random.r…