ACM__01背包,完全背包,多重背包】的更多相关文章

HDU 1114 Piggy-Bank 完全背包问题. 想想我们01背包是逆序遍历是为了保证什么? 保证每件物品只有两种状态,取或者不取.那么正序遍历呢? 这不就正好满足完全背包的条件了吗 means:给出小猪钱罐的重量和装满钱后的重量,然后是几组数据,每组数据包括每种钱币的价值与重量要求出装满钱罐时的最小价值 #include<cstdio> #include<cstring> #include<cmath> #include<iostream> usin…
本文出自:http://blog.csdn.net/svitter 原题:http://acm.hdu.edu.cn/showproblem.php?pid=2191 题意:多重背包问题.转换成为01背包解.多重背包转化为01背包的关键在于把件数从整体中孤立出来作为一个新的个体,也就是说不管分类,有多少件就有多少种. AC代码: //============================================================================ // Na…
题目大意 给定一个容量为M的背包以及n种物品,每种物品有一个体积和数量,要求你用这些物品尽量的装满背包 题解 就是多重背包~~~~用二进制优化了一下,就是把每种物品的数量cnt拆成由几个数组成,1,2,4,~~~cnt-2^K+1,k满足cnt-2^K+1>0的最大整数,体积和价值乘上相应的数就是相应物品的价值和体积,这样用这些物品能够表示1~~cnt所有的情况~~~这就转化成01背包了~~~ 代码: #include <iostream> #include <cstdio>…
Description People in Silverland use coins.They have coins of value A1,A2,A3...An Silverland dollar.One day Tony opened his money-box and found there were some coins.He decided to buy a very nice watch in a nearby shop. He wanted to pay the exact pri…
/*问你能不能将给出的资源平分成两半,那么我们就以一半为背包,运行多重背包模版 但是注意了,由于个数过大,直接运行会超时,所以要用二进制拆分每种的个数*/ #include<stdio.h> #include<string.h> #include<algorithm> using namespace std; ],vr[],dp[]; ],v[]; int numw; void cf(int n,int ok) { int i,j,sum,e; e=sum=; whil…
转载请注明出处:http://blog.csdn.net/u012860063 贴一个自觉得解说不错的链接:http://www.cppblog.com/tanky-woo/archive/2010/07/31/121803.html 模版就直接贴代码: 01背包模板: /* 01背包问题 01背包问题的特点是,">每种物品仅有一件.能够选择放或不放. 01背包问题描写叙述: 有N件物品和一个容量为V的背包. 第i件物品的重量是c[i],价值是w[i]. 求解将哪些物品装入背包可使这些物品…
Description Input 第一行,两个正整数 S 和 q,q 表示询问数量.接下来 q 行,每行一个正整数 n. Output 输出共 q 行,分别为每个询问的答案. Sample Input 30 3 9 29 1000000000000000000 Sample Output 0 9 450000036 Hint 感谢the Loser协助更正数据对于100%的数据,2<=S<=2e6​​,1<=n<=101810^{18}10​18​​,1<=q<=10…
今天写题的时候碰到了一道完全背包题,可是没有看出来,乱写了一通,浪费了一个晚上,顺便复习一下背包的知识 01背包 每种物品只能选择一次或者不选,求背包容量内的最大价值 先给出状态转移方程: f[i][j]=max(f[i-1][j],f[i-1][j-w[i]]+v[i]); 解释一下:f[i][j]表示的是前i个物品中,背包容量为j时,得到的最大价值:如果在容量为j时选择不放第i个物品,那么f[i][j]=f[i-1][j],f[i-1][j]表示前一个物品在容量j时的状态值:如果在容量为j时…
题目描述 小S坚信任何问题都可以在多项式时间内解决,于是他准备亲自去当一回旅行商.在出发之前,他购进了一些物品.这些物品共有n种,第i种体积为Vi,价值为Wi,共有Di件.他的背包体积是C.怎样装才能获得尽量多的收益呢?作为一名大神犇,他轻而易举的解决了这个问题. 然而,就在他出发前,他又收到了一批奇货.这些货共有m件,第i件的价值Yi与分配的体积Xi之间的关系为:Yi=ai*Xi^2+bi*Xi+ci.这是件好事,但小S却不知道怎么处理了,于是他找到了一位超级神犇(也就是你),请你帮他解决这个…
题意:假设有x1个字母A, x2个字母B,..... x26个字母Z,同时假设字母A的价值为1,字母B的价值为2,..... 字母Z的价值为26.那么,对于给定的字母,可以找到多少价值<=50的单词呢?单词的价值就是组成一个单词的所有字母的价值之和,比如,单词ACM的价值是1+3+14=18,单词HDU的价值是8+4+21=33.(组成的单词与排列顺序无关,比如ACM与CMA认为是同一个单词). 题解:把26个字母看做26种背包,有个数有价值,求价值不超过50的所有可能个数,就是标准的多重背包.…