[题目分析] Matrix-Tree定理+高斯消元 求矩阵行列式的值,就可以得到生成树的个数. 至于证明,可以去看Vflea King(炸树狂魔)的博客 [代码] #include <cmath> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; #define eps 1e-8 #define ma…
In some countries building highways takes a lot of time... Maybe that's because there are many possiblities to construct a network of highways and engineers can't make up their minds which one to choose. Suppose we have a list of cities that can be c…
题目链接 BZOJ4031 题解 第一眼:这不裸的矩阵树定理么 第二眼:这个模\(10^9\)是什么鬼嘛QAQ 想尝试递归求行列式,发现这是\(O(n!)\)的.. 想上高斯消元,却又处理不了逆元这个东西.. 无奈去翻题解,,, 发现可以用类似辗转相除法去消,而避免除法,,, 这样子依旧是每次一行减去另一行乘一个数,行列式不变 orz #include<algorithm> #include<iostream> #include<cstring> #include<…
[bzoj4031][HEOI2015]小Z的房间 2015年4月30日3,0302 Description 你突然有了一个大房子,房子里面有一些房间.事实上,你的房子可以看做是一个包含n*m个格子的格状矩形,每个格子是一个房间或者是一个柱子.在一开始的时候,相邻的格子之间都有墙隔着. 你想要打通一些相邻房间的墙,使得所有房间能够互相到达.在此过程中,你不能把房子给打穿,或者打通柱子(以及柱子旁边的墙).同时,你不希望在房子中有小偷的时候会很难抓,所以你希望任意两个房间之间都只有一条通路.现在,…
传送门:https://www.luogu.org/problemnew/show/P3317 这道题的推导公式还是比较好理解的,但是由于这个矩阵是小数的,要注意高斯消元方法的使用: #include <algorithm> #include <iterator> #include <iostream> #include <cstring> #include <cstdlib> #include <iomanip> #include…
4031: [HEOI2015]小Z的房间 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 937  Solved: 456[Submit][Status][Discuss] Description 你突然有了一个大房子,房子里面有一些房间.事实上,你的房子可以看做是一个包含n*m个格子的格状矩形,每个格子是一个房间或者是一个柱子.在一开始的时候,相邻的格子之间都有墙隔着. 你想要打通一些相邻房间的墙,使得所有房间能够互相到达.在此过程中,你不能把…
正题 题目链接:https://www.luogu.com.cn/problem/CF917D 题目大意 给出\(n\)个点的一棵树,对于每个\(k\)求有多少个\(n\)个点的树满足与给出的树恰好有\(k\)条边重合. 解题思路 矩阵树有一个统计所有树边权和的和用法,就是把变量变成一个形如\(wx+1\)的多项式,这样一次项系数的值就表示了固定选择一条边的\(w\)时其他边的方案数之和. 这题我们可以同理,对于在给出数上的边是\(x\),而其他就是\(1\).那么最后询问\(x^k\)的系数就…
qwq 这个题目真的是很好的一个题啊 qwq 其实一开始想这个题,肯定是无从下手. 首先,我们会发现,对于无向图的一个最小生成树来说,只有当存在一些边与内部的某些边权值相同的时候且能等效替代的时候,才会有多种最小生成树. 那我们不妨对于原图先随意求一个最小生成树,然后对于出现在最小生成树上的每个权值计算贡献. 我们每次删除所有该权值的边,然后把剩下的点能缩点的进行缩点(用并查集来维护) 然后,我们构造一个联通块的拉普拉斯矩阵.也就是说,加入所有的在图中的,权值为该值的边.然后我们只需要求能重新构…
给出两幅 \(n(\leq 400)\) 个点的无向图 \(G_1 ,G_2\),对于 \(G_1\) 的每一颗生成树,它的权值定义为有多少条边在 \(G_2\) 中出现.求 \(G_1\) 所有生成树的权值和. Solution 很容易想到,设 \(G_1\) 中每条边的权值,这条边在 \(G_2\) 中出现则权值为 \(1\),否则权值为 \(0\). 现在就真的是求所有生成树的边权和的权值和了. 然而标准的 Matrix-Tree Theorem 求的是生成树的边权积的和. 现在我们定义每…
[总览] 高斯消元基本思想是将方程式的系数和常数化为矩阵,通过将矩阵通过行变换成为阶梯状(三角形),然后从小往上逐一求解. 如:$3X_1 + 2X_2 + 1X_3 = 3$ $              X_2 + 2X_3 = 1$ $2X_1 + X_3 = 0$ 化为矩阵为:--->----->-----> 然后就可以通过最后一行直接求出$X_3 = ...$,将其带回第二行,算出$X_2$,同理算出$X_1$. 代码很好理解: inline void gauss(){ int…