Hive 已是目前业界最为通用.廉价的构建大数据时代数据仓库的解决方案了,虽然也有 Impala 等后起之秀,但目前从功能.稳定性等方面来说,Hive 的地位尚不可撼动. 其实这篇博文主要是想聊聊 SMB join 的,Join 是整个 MR/Hive 最为核心的部分之一,是每个 Hadoop/Hive/DW RD 必须掌握的部分,之前也有几篇文章聊到过 MR/Hive 中的 join,其实底层都是相同的,只是上层做了些封装而已,如果你还不了解究竟 Join 有哪些方式,以及底层怎么实现的,请参…
hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的sql查询功能,可以将sql语句转换为MapReduce任务进行运行. Metastore (hive元数据)Hive将元数据存储在数据库中,比如mysql ,derby.Hive中的元数据包括表的名称,表的列和分区及其属性,表的数据所在的目录 Hive数据存储在HDFS,大部分的查询.计算由mapreduce完成Hive数据仓库于数据库的异同 (1)由于Hive采用了SQL的查询语言HQL,因此…
一.索引 简介 Hive支持索引,但是Hive的索引与关系型数据库中的索引并不相同,比如,Hive不支持主键或者外键. Hive索引可以建立在表中的某些列上,以提升一些操作的效率,例如减少MapReduce任务中需要读取的数据块的数量. 在可以预见到分区数据非常庞大的情况下,索引常常是优于分区的. 为什么要创建索引? Hive的索引目的是提高Hive表指定列的查询速度. 没有索引时,类似'WHERE tab1.col1 = 10' 的查询,Hive会加载整张表或分区,然后处理所有的rows, 但…
环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk8 hadoop-3.1.1 apache-hive-3.1.1 一.Hive 参数 1.Hive 参数类型hive当中的参数.变量,都是以命名空间开头: 通过${}方式进行引用,其中system.env下的变量必须以前缀开头: 在Hive CLI查看参数 #显示所有参数 hive>set; #查看单个参数 hive> set hive.cli.print.h…
  一.Hive背景介绍 Hive最初是Facebook为了满足对海量社交网络数据的管理和机器学习的需求而产生和发展的.马云在退休的时候说互联网现在进入了大数据时代,大数据是现在互联网的趋势,而hadoop就是大数据时代里的核心技术,但是hadoop的mapreduce操作专业性太强,所以facebook在这些基础上开发了hive框架,毕竟世界上会sql的人比会java的人多的多,hive可以说是学习hadoop相关技术的一个突破口,那些志立于投身hadoop技术开发的童鞋们,可以先从hive开…
Hive基础(一) 2018-12-19 15:35:03 人间怪物 阅读数 234   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/qq_41975699/article/details/85044696 1.Hive是什么 Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射成为一张数据库表,并提供类SQL的查询功能.可以将sql语句转化为MapReduce任务…
<Programming Hive>读书笔记(两)Hive基础知识 :第一遍读是浏览.建立知识索引,由于有些知识不一定能用到,知道就好.感兴趣的部分能够多研究. 以后用的时候再具体看.并结合其它资料一起. Chapter 3.Data Types and File Formats 原始数据类型和集合数据类型 Select出来的数据,列与列之间的分隔符能够指定 Chapter 4.HiveQL:Data Definition 创建数据库,创建和修改表,分区的操作 Chapter 5.HiveQL…
对于每一个表(table)或者分区, Hive可以进一步组织成桶,也就是说桶是更为细粒度的数据范围划分.Hive也是针对某一列进行桶的组织.Hive采用对列值哈希,然后除以桶的个数求余的方式决定该条记录存放在哪个桶当中. 把表(或者分区)组织成桶(Bucket)有两个理由: (1)获得更高的查询处理效率.桶为表加上了额外的结构,Hive 在处理有些查询时能利用这个结构.具体而言,连接两个在(包含连接列的)相同列上划分了桶的表,可以使用 Map 端连接 (Map-side join)高效的实现.比…
1.创建分区表 hive> create table weather_list(year int,data int) partitioned by (createtime string,area string) row format delimited fields terminated by ","; 修改表: hive> alter table weather_list change data new_data int; hive> alter table wea…
对于每一个表(table)或者分区, Hive可以进一步组织成桶,也就是说桶是更为细粒度的数据范围划分.Hive也是针对某一列进行桶的组织.Hive采用对列值哈希,然后除以桶的个数求余的方式决定该条记录存放在哪个桶当中. 把表(或者分区)组织成桶(Bucket)有两个理由: (1)获得更高的查询处理效率.桶为表加上了额外的结构,Hive 在处理有些查询时能利用这个结构.具体而言,连接两个在(包含连接列的)相同列上划分了桶的表,可以使用 Map 端连接 (Map-side join)高效的实现.比…