使用snapshot继续训练网络】的更多相关文章

注意:snapshots和weights不能同时使用 用预训练模型进行finetune是以下命令: ./build/tools/caffe train --solver=examples/XXX/lenet_solver.prototxt -weights examples/models/finetuning.caffemodel --gpu 使用快照文件(.solverstate),则可以使用-snapshot参数: ./build/tools/caffe train --solver=exa…
Github地址:Mask_RCNN 『计算机视觉』Mask-RCNN_论文学习 『计算机视觉』Mask-RCNN_项目文档翻译 『计算机视觉』Mask-RCNN_推断网络其一:总览 『计算机视觉』Mask-RCNN_推断网络其二:基于ReNet101的FPN共享网络 『计算机视觉』Mask-RCNN_推断网络其三:RPN锚框处理和Proposal生成 『计算机视觉』Mask-RCNN_推断网络其四:FPN和ROIAlign的耦合 『计算机视觉』Mask-RCNN_推断网络其五:目标检测结果精炼…
Github地址:Mask_RCNN 『计算机视觉』Mask-RCNN_论文学习 『计算机视觉』Mask-RCNN_项目文档翻译 『计算机视觉』Mask-RCNN_推断网络其一:总览 『计算机视觉』Mask-RCNN_推断网络其二:基于ReNet101的FPN共享网络 『计算机视觉』Mask-RCNN_推断网络其三:RPN锚框处理和Proposal生成 『计算机视觉』Mask-RCNN_推断网络其四:FPN和ROIAlign的耦合 『计算机视觉』Mask-RCNN_推断网络其五:目标检测结果精炼…
Github地址:Mask_RCNN 『计算机视觉』Mask-RCNN_论文学习 『计算机视觉』Mask-RCNN_项目文档翻译 『计算机视觉』Mask-RCNN_推断网络其一:总览 『计算机视觉』Mask-RCNN_推断网络其二:基于ReNet101的FPN共享网络 『计算机视觉』Mask-RCNN_推断网络其三:RPN锚框处理和Proposal生成 『计算机视觉』Mask-RCNN_推断网络其四:FPN和ROIAlign的耦合 『计算机视觉』Mask-RCNN_推断网络其五:目标检测结果精炼…
上一节中,我们采用了一个自定义的网络结构,从头开始训练猫狗大战分类器,最终在使用图像增强的方式下得到了82%的验证准确率.但是,想要将深度学习应用于小型图像数据集,通常不会贸然采用复杂网络并且从头开始训练(training from scratch),因为训练代价高,且很难避免过拟合问题.相对的,通常会采用一种更高效的方法--使用预训练网络. 预训练网络的使用通常有两种方式,一种是利用预训练网络简单提取图像的特征,之后可能会利用这些特征进行其他操作(比如和文本信息结合以用于image capti…
我们已经训练过几个神经网络了,识别手写数字,房价预测或者是区分猫和狗,那随之而来就有一个问题,这些训练出的网络怎么用,每个问题我都需要重新去训练网络吗?因为程序员都不太喜欢做重复的事情,因此答案肯定是已经有轮子了. 我们先来介绍一个数据集,ImageNet.这就不得不提一个大名鼎鼎的华裔 AI 科学家李飞飞. 2005 年左右,李飞飞结束了他的博士生涯,开始了他的学术研究不就她就意识到了一个问题,在此之前,人们都尽可能优化算法,认为无论数据如何,只要算法够好,就能做出更好的决策,李飞飞意识到了这…
上一篇文章我们聊的是使用预训练网络中的一种方法,特征提取,今天我们讨论另外一种方法,微调模型,这也是迁移学习的一种方法. 微调模型 为什么需要微调模型?我们猜测和之前的实验,我们有这样的共识,数据量越少,网络的特征节点越多,会越容易导致过拟合,这当然不是我们所希望的,但对于那些预先训练好的模型,还有可能最终无法很好的完成所要做的工作,因此我们还需要对其更改,基于此原因,我们需要做的就是拿来一个训练好的模型,更改其中更加抽象的层,即网络后面的层,然后再采用新的分类器,这样可以比较好的解决上面所提出…
画黑底白字的软件:KolourPaint. 假设所有"1"的图片放到名字为1的文件夹下.(0-9类似)..获取每个数字的名称文件后,手动表上标签.然后合成train.txt 1.获取文件夹内全部图像的名称: find ./1 -name '*.png'>1.txt //此时的1.txt文件中的图像名称包括路劲信息,要把前面的路径信息去掉. $ sudo sed -i "s/.\/1\///g" 1.txt          //(\表示转义,所以这里用双引号而…
1.mixup原理介绍 mixup 论文地址 mixup是一种非常规的数据增强方法,一个和数据无关的简单数据增强原则,其以线性插值的方式来构建新的训练样本和标签.最终对标签的处理如下公式所示,这很简单但对于增强策略来说又很不一般. ,两个数据对是原始数据集中的训练样本对(训练样本和其对应的标签).其中是一个服从B分布的参数, .Beta分布的概率密度函数如下图所示,其中 因此,α 是一个超参数,随着α的增大,网络的训练误差就会增加,而其泛化能力会随之增强.而当 α→∞ 时,模型就会退化成最原始的…
一个预测层的网络结构如下所示: 可以看到,是由三个分支组成的,分别是"PriorBox"层,以及conf.loc的预测层,其中,conf与loc的预测层的参数是由PriorBox的参数计算得到的,具体计算公式如下: min_size与max_size分别对应一个尺度的预测框(有几个就对应几个预测框),in_size只管自己的预测,而max_size是与aspect_ratio联系在一起的: filp参数是对应aspect_ratio的预测框*2,以几个max_size,再乘以几:最终得…