Introduction 深度增强学习Deep Reinforcement Learning是将深度学习与增强学习结合起来从而实现从Perception感知到Action动作的端对端学习的一种全新的算法.简单的说,就是和人类一样,输入感知信息比如视觉,然后通过深度神经网络,直接输出动作,中间没有hand-crafted工作.深度增强学习具备使机器人实现完全自主的学习一种甚至多种技能的潜力. 虽然将深度学习和增强学习结合的想法在几年前就有人尝试,但真正成功的开端是DeepMind在NIPS 201…
机器学习算法大致可以分为三种: 1. 监督学习(如回归,分类) 2. 非监督学习(如聚类,降维) 3. 增强学习 什么是增强学习呢? 增强学习(reinforcementlearning, RL)又叫做强化学习,是近年来机器学习和智能控制领域的主要方法之一. 定义: Reinforcement learning is learning what to do ----how to map situations to actions ---- so as to maximize a numerica…
Introduction 深度增强学习Deep Reinforcement Learning是将深度学习与增强学习结合起来从而实现从Perception感知到Action动作的端对端学习的一种全新的算法.简单的说,就是和人类一样,输入感知信息比如视觉,然后通过深度神经网络,直接输出动作,中间没有hand-crafted工作.深度增强学习具备使机器人实现完全自主的学习一种甚至多种技能的潜力. 虽然将深度学习和增强学习结合的想法在几年前就有人尝试,但真正成功的开端是DeepMind在NIPS 201…
本文转自:http://mp.weixin.qq.com/s/aAHbybdbs_GtY8OyU6h5WA 专题 | 深度强化学习综述:从AlphaGo背后的力量到学习资源分享(附论文) 原创 2017-01-28 Yuxi Li 机器之心 选自arXiv 作者:Yuxi Li 编译:Xavier Massa.侯韵楚.吴攀   摘要 本论文将概述最近在深度强化学习(Deep Reinforcement Learning)方面喜人的进展.本文将从深度学习及强化学习的背景知识开始,包括了对实验平台的…
这是一篇被ICLR 2019 接收的论文.论文讨论了如何利用场景先验知识 (scene priors)来定位一个新场景(novel scene)中未曾见过的物体(unseen objects).举例来说,在「厨房」这一场景中,有一张图片显示「苹果」在冰箱的储物架上,同为水果的物体,如「橙子」,会出现在场景的哪个位置呢?论文提出了用基于强化学习的方法来定位「橙子」. 论文:VISUAL SEMANTIC NAVIGATION USING SCENE PRIORS 论文作者:Wei Yang , X…
目录: 1. 引言 专栏知识结构 从AlphaGo看深度强化学习 2. 强化学习基础知识 强化学习问题 马尔科夫决策过程 最优价值函数和贝尔曼方程 3. 有模型的强化学习方法 价值迭代 策略迭代 4. 无模型的强化学习方法 蒙特卡洛方法 时序差分学习 值函数近似 策略搜索 5. 实战强化学习算法 Q-learning 算法 Monte Carlo Policy Gradient 算法 Actor Critic 算法 6. 深度强化学习算法 Deep Q-Networks(DQN) Deep De…
2015年,DeepMind团队在Nature杂志上发表了一篇文章名为"Human-level control through deep reinforcement learning"的论文,在这篇论文中,他们提出了DQN算法的改进版本,他们将改进的算法应用到49种不同的Atari 2600游戏中,并且其中的一半实现了超过人类玩家的性能.现在,深度强化学习已经成为了人工智能(Artificial Intelligence,简称AI)领域最前沿的研究方向,在各个应用领域也是备受推崇,如同…
Learning how to Active Learn: A Deep Reinforcement Learning Approach 2018-03-11 12:56:04 1. Introduction: 对于大部分 NLP 的任务,得到足够的标注文本来进行模型的训练是一个关键的瓶颈.所以,active learning 被引入到 NLP 任务中以最小化标注数据的代价.AL 的目标是通过识别一小部分数据来进行标注,以此来降低 cost,选来最小化监督模型的精度. 毫无疑问的是,AL 对于其…
深度强化学习 基本概念 强化学习 强化学习(Reinforcement Learning)是机器学习的一个重要的分支,主要用来解决连续决策的问题.强化学习可以在复杂的.不确定的环境中学习如何实现我们设定的目标. 深度学习 深度学习(Deep Learning)也是机器学习的一个重要分支,也就是多层神经网络,通过多层的非线性函数实现对数据分布及函数模型的拟合.(从统计学角度来看,就是在预测数据分布,从数据中学习到一个模型,然后通过这个模型去预测新的数据) 深度强化学习 深度强化学习(Deep Re…
转自https://zhuanlan.zhihu.com/p/25239682 过去的一段时间在深度强化学习领域投入了不少精力,工作中也在应用DRL解决业务问题.子曰:温故而知新,在进一步深入研究和应用DRL前,阶段性的整理下相关知识点.本文集中在DRL的model-free方法的Value-based和Policy-base方法,详细介绍下RL的基本概念和Value-based DQN,Policy-based DDPG两个主要算法,对目前state-of-art的算法(A3C)详细介绍,其他…