JVM内存模型及参数调优】的更多相关文章

堆.栈.方法区概念区别 1.堆 堆内存用于存放由new创建的对象和数组.在堆中分配的内存,由java虚拟机自动垃圾回收器来管理.根据垃圾回收机制的不同, Java堆有可能拥有不同的结构,最为常见的就是将整个Java堆分为新生代和老年代.其中新声带存放新生的对象或者年龄不大的 对象,老年代则存放老年对象.新生代分为edn区.s0区.s1区,s0和s1也被称为from和to区域,他们是两块大小相等并且可以 互相角色的空间.绝大多数情况下,对象首先分配在eden区,在新生代回收后,如果对象还存活,则进…
1. JVM内存区域和参数配置 1.1 JVM内存结构 Java堆(Heap) Java堆是被所有线程共享的一块内存区域,在虚拟机启动时创建.此内存区域的唯一目的就是存放对象实例,几乎所有的对象实例都在这里分配内存. 方法区(Method Area) 方法区(Method Area)与Java堆一样,是各个线程共享的内存区域,它用于存储已被虚拟机加载的类信息.常量.静态变量.即时编译器编译后的代码等数据 程序计数器(Program Counter Register) 由于Java虚拟机的多线程是…
堆内存(Heap) 堆是由Java虚拟机(JVM,下文提到的JVM特指Sun hotspot JVM)用来存放Java类.对象和静态成员的内存空间,Java程序中创建的所有对象都在堆中分配空间,堆只用来存储对象,应用程序通过存放在堆栈(Stack)内的引用来访问堆数据,一个JVM进程只能拥有一个堆.JVM通过-Xms和-Xmx参数分别设置堆的初始值和最大值,初始值默认是物理内存的1/64但小于1G,最大值默认是物理内存的1/4但小于1G .默认空余堆内存小于40%时,JVM就会增大堆直到-Xmx…
[Spark内存模型] Spark在一个executor中的内存分为3块:storage内存.execution内存.other内存. 1. storage内存:存储broadcast,cache,persist数据的地方. 2. execution内存:执行内存,join.aggregate.map等shuffle中间结果都缓存在这部分内存中,满了再写入磁盘,能够减少IO.其实map过程也是在这个内存中执行的. 3. other内存:程序代码执行时预留给自己的内存. 其中,execution和…
如题,本文的宗旨既是透过对象的生命周期,来梳理JVM内存结构及GC相关知识,并辅以AOP及双亲委派机制原理,学习不仅仅是海绵式的吸收学习,还需要自己去分析why,加深对技术的理解和认知,祝大家早日走上自己的"成金之路". Java对象的创建 本部分,从攻城狮编写.java文件入手,详解了编译.载入.AOP原理. 读过<程序员的自我修养>的朋友,对程序的编译及执行会有一个很清晰的认识:编译其实就是将人类能理解的代码文件转译为机器/CPU能执行的文件(包括数据段.代码段),而执…
一.JVM内存模型 (图片来自网络) 根据Java虚拟机规范,JVM将内存划分为: New(年轻代) Tenured(年老代) Perm (永久代) 其中New和Tenured属于堆内存,堆内存会从JVM启动参数(-Xmx,-Xms,前者是JVM最大允许分配的堆内存,后者是JVM初始分配的堆内存)指定的内存中分配,Perm不属于堆内存,由虚拟机直接分配,但可以通过-XX:PermSize -XX:MaxPermSize 等参数调整其大小. 年轻代(New):年轻代用来存放JVM刚分配的Java对…
XGBoost算法在实际运行的过程中,可以通过以下要点进行参数调优: (1)添加正则项: 在模型参数中添加正则项,或加大正则项的惩罚力度,即通过调整加权参数,从而避免模型出现过拟合的情况. (2)控制决策树的层数: 通过叶子结点数目控制决策树的层数,视乎样本量大小决定,对于10万以下 的样本,一般在1到4之间,而针对更大的样本量,可以尝试更深的决策树层数发掘隐藏在数据里的一些规律或模式.(3)设定叶子结点包含的最少样本数目: 从而防止出现过小的叶子结点,降低预测(4)增加算法迭代次数: 可有效提…
在上一篇博客记录了GC的算法及种类,这篇博客主要记录一下GC的参数如何调整以提高jvm的性能. 一.堆的回顾: 堆的内存空间总体分为新生代和老年代,老年代存放的老年对象,新构造的对象分配在eden区中(栈上分配及新生代内存不足的情况除外).在经过GC之后,幸存下来的对象会被分配到幸存代中,s0与s1是两块完全相同的内存区域,采用复制算法,在迭代后交换内存空间.经过若干次GC后,仍然未被回收的对象会被分配到老年代中. 二.GC参数--串行收集器(Serial) 串行收集器有以下几个特点: 1)最古…
[场景] Spark提交作业job的时候要指定该job可以使用的CPU.内存等资源参数,生产环境中,任务资源分配不足会导致该job执行中断.失败等问题,所以对Spark的job资源参数分配调优非常重要. spark提交作业,yarn-cluster模式示例: ./bin/spark-submit\ --class com.ww.rdd.wordcount \ --master yarn \ --deploy-mode cluster \  --executor-memory 4G \ --num…
[生产实践经验] 生产实践中的切身体会是:影响Spark性能的大BOSS就是shuffle,抓住并解决shuffle这个主要原因,事半功倍. [Shuffle原理学习笔记] 1.未经优化的HashShuffleManager 注:这是spark1.2版本之前,最早使用的shuffle方法,这种shuffle方法不要使用,只是用来对比改进后的shuffle方法.  如上图,上游每个task 都输出下游task个数的结果文件,下游每个task去上游task输出的结果文件中获取对应自己的. 问题: 生…