tf.strided_slice函数】的更多相关文章

在keras_yolo中model函数下的yolo_head下:grid_shape = K.shape(feats)[1:3] grid_shape: <tf.Tensor 'strided_slice:0' shape=(0,) dtype=int32> cifar10的例子中也有. 具体参考;https://blog.csdn.net/eForever/article/details/84025314…
tf.expand_dims和tf.squeeze函数 一.tf.expand_dims() Function tf.expand_dims(input, axis=None, name=None, dim=None) Inserts a dimension of 1 into a tensor’s shape. 在第axis位置增加一个维度 Given a tensor input, this operation inserts a dimension of 1 at the dimensio…
tf.random_normal 函数 random_normal( shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None ) 定义在:tensorflow/python/ops/random_ops.py. 请参阅指南:生成常量,序列和随机值>随机张量 从正态分布中输出随机值. 参数: shape:一维整数张量或 Python 数组.输出张量的形状. mean:dtype 类型的0-D张量或 Python 值.正…
tf.transpose函数中文意思是转置,对于低维度的转置问题,很简单,不想讨论,直接转置就好(大家看下面文档,一看就懂). tf.transpose(a, perm=None, name='transpose') Transposes a. Permutes the dimensions according to perm. The returned tensor's dimension i will correspond to the input dimension perm[i]. If…
tf.reduce_mean 函数用于计算张量tensor沿着指定的数轴(tensor的某一维度)上的的平均值,主要用作降维或者计算tensor(图像)的平均值. reduce_mean(input_tensor, axis=None, keep_dims=False, name=None, reduction_indices=None) 第一个参数input_tensor: 输入的待降维的tensor; 第二个参数axis: 指定的轴,如果不指定,则计算所有元素的均值; 第三个参数keep_d…
tf.transpose函数解析 觉得有用的话,欢迎一起讨论相互学习~Follow Me tf.transpose(a, perm = None, name = 'transpose') 解释 将a进行转置,并且根据perm参数重新排列输出维度.这是对数据的维度的进行操作的形式. Details 图像处理时数据集中存储数据的形式为[channel,image_height,image_width],在tensorflow中使用CNN时我们需要将其转化为[image_height,image_wi…
tf.slice函数解析 觉得有用的话,欢迎一起讨论相互学习~Follow Me tf.slice(input_, begin, size, name = None) 解释 : 这个函数的作用是从输入数据input中提取出一块切片 切片的尺寸是size,切片的开始位置是begin. 切片的尺寸size表示输出tensor的数据维度,其中size[i]表示在第i维度上面的元素个数. 开始位置begin表示切片相对于输入数据input_的每一个偏移量,比如数据input是 [[[1, 1, 1],…
tf.random_normal()函数用于从服从指定正太分布的数值中取出指定个数的值. tf.random_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None) shape: 输出张量的形状,必选 mean: 正态分布的均值,默认为0 stddev: 正态分布的标准差,默认为1.0 dtype: 输出的类型,默认为tf.float32 seed: 随机数种子,是一个整数,当设置之后,每次生成的随机…
tf.placeholder()函数 Tensorflow中的palceholder,中文翻译为占位符,什么意思呢? 在Tensoflow2.0以前,还是静态图的设计思想,整个设计理念是计算流图,在编写程序时,首先构筑整个系统的graph,代码并不会直接生效,这一点和python的其他数值计算库(如Numpy等)不同,graph为静态的,在实际的运行时,启动一个session,程序才会真正的运行.这样做的好处就是:避免反复地切换底层程序实际运行的上下文,tensorflow帮你优化整个系统的代码…
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明.本文链接:https://blog.csdn.net/dcrmg/article/details/79091941 tf.ConfigProto()函数用在创建session的时候,用来对session进行参数配置: config = tf.ConfigProto(allow_soft_placement=True, allow_soft_placement=True)config.gpu_o…
参考 1. tensorflow中 tf.reduce_mean函数: 完…
tf.argmax()函数原型: def argmax(input, axis=None, name=None, dimension=None, output_type=dtypes.int64) 作用是返回每列/行的最大值的索引. input是一个张量, axis是0或1,0返回各列最大值索引,1返回各行最大值索引. 其他3个参数不常用,常用写法是 a = tf.argmax(tensor, 1). import tensorflow as tf sess = tf.InteractiveSe…
转载  https://blog.csdn.net/duanlianvip/article/details/98626111 tf.reset_default_graph函数用于清除默认图形堆栈并重置全局默认图形. 1.无tf.reset_default_graph import tensorflow as tf # 执行完 with 里边的语句之后,这个 conv1/ 和 conv2/ 空间还是在内存中的.这时候如果再次执行此代码,就会再生成其他命名空间 with tf.name_scope(…
目录 1.官方注释 2.参数解释 3.例子 参考 @(tf.slice()函数详解 ) tf.slice()是TensorFlow库中分割张量的一个函数,其定义为def slice(input_, begin, size, name=None):.tf.slice()函数的那些参数设置实在是不好理解,查了好多资料才理解,所以这边记录一下. 1.官方注释 官方的注释如下: """Extracts a slice from a tensor. This operation ext…
一个tensorflow图由以下几部分组成: 占位符变量(Placeholder)用来改变图的输入. 模型变量(Model)将会被优化,使得模型表现得更好. 模型本质上就是一些数学函数,它根据Placeholder和模型的输入变量来计算一些输出. 一个cost函数度量用来指导变量的优化. 一个优化策略会更新模型的变量.(梯度下降优化器) 四则运算: +-*/ ** 基本运算 tf.add(x,y,name) tf.subtract(x,y,name) tf.multiply(x,y,name)…
1. tf.reduce_mean(a) : 求平均值 2. tf.truncated_normal([3,2],stddev=0.1) : 从正态分布中输出随机值,标准差为0,1,构造矩阵为3*2的 3. tf.argmax(vector, 1):返回的是vector中的最大值的索引号,如果vector是一个向量,那就返回一个值,如果是一个矩阵,那就返回一个向量,这个向量的每一个维度都是相对应矩阵行的最大值元素的索引号. A = [[1,3,4,5,6]]B = [[1,3,4], [2,4,…
range()函数用于创建数字序列变量,有以下两种形式: range(limit, delta=1, dtype=None, name='range') range(start, limit, delta=1, dtype=None, name='range') 该数字序列开始于 start 并且将以 delta 为增量扩展到不包括 limit 时的最大值结束,类似python的range函数. #-*-coding:utf-8-*- import tensorflow as tf x=tf.r…
tf.placeholder(dtype, shape=None, name=None) 此函数用于定义过程,在执行的时候再赋具体的值 参数: dtype:数据类型.常用的是tf.float32,tf.float64等数值类型 shape:数据形状.默认是None,就是一维值,也可以多维,比如:[None,3],表示列是3,行不一定 name:名称. 返回: Tensor类型 赋值一般用sess.run(feed_dict = {x:xs, y_:ys}),其中x,y_是用placeholder…
tf.argmax(input, axis=None, name=None, dimension=None) 此函数是对矩阵按行或列计算最大值   参数 input:输入Tensor axis:0表示按列,1表示按行 name:名称 dimension:和axis功能一样,默认axis取值优先.新加的字段 返回:Tensor  一般是行或列的最大值下标向量   例:…
原来这个函数,不能按以前的方式进行调用了,只能使用命名参数的方式来调用.原来是这样的: tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(y, y_)) 因此修改需要成这样: tf.reduce_sum(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y_)) logits是预测值,labels是标签值…
tf.where()的使用,该函数会返回满足条件的索引.经验证,发现返回均是二维矩阵,可以说明该函数用二维矩阵给出满足条件的位置索引.(若有错误,欢迎指正.) 代码如下:import tensorflow as tfsess=tf.Session()import numpy as npprint('验证一维矩阵,tf.where()返回的索引:')target_class_ids=np.array([4,5,3,6,2])positive_roi_ix = tf.where(target_cla…
函数形式: tf.placeholder(     dtype,     shape=None,     name=None ) 参数: dtype:数据类型.常用的是tf.float32,tf.float64等数值类型 shape:数据形状.默认是None,就是一维值,也可以是多维(比如[2,3], [None, 3]表示列是3,行不定) name:名称,可以理解为变量的名字(自变量) import tensorflow as tf import numpy as np input1 = tf…
转载:https://blog.csdn.net/tsyccnh/article/details/82459859 tensorflow中的tile()函数是用来对张量(Tensor)进行扩展的,其特点是对当前张量内的数据进行一定规则的复制.最终的输出张量维度不变. 函数定义: tf.tile( input, multiples, name=None ) input是待扩展的张量,multiples是扩展方法. 假如input是一个3维的张量.那么mutiples就必须是一个1x3的1维张量.这…
原文地址: https://blog.csdn.net/uestc_c2_403/article/details/73350457 由于tensorflow 版本更新问题   用法略有修改 ---------------------------------------------------------------------------------- tf.split(input, num_split, dimension): dimension的意思就是输入张量的哪一个维度,如果是0就表示对…
tf.get_variable(name,  shape, initializer): name就是变量的名称,shape是变量的维度,initializer是变量初始化的方式,初始化的方式有以下几种: tf.constant_initializer:常量初始化函数 tf.random_normal_initializer:正态分布 tf.truncated_normal_initializer:截取的正态分布 tf.random_uniform_initializer:均匀分布 tf.zero…
函数原型:tf.placeholder(dtype, shape=None, name=None) 使用说明:该函数用于得到传递进来的真实的训练样本.同时也可以理解为形参, 用于定义过程,在执行的时候再赋具体的值.(相当于首先定义一个容器,包含容量.size等信息,真正调用的时候再往容器里面注入东西) 注意:不必指定初始值,可以在运行时,通过Session.run 函数的参数"feed_dict={x : value}"进行赋值 参数说明: dtype:数据类型.常用的是tf.floa…
1234567reduce_sum 是 tensor 内部求和的工具.其参数中: input_tensor 是要求和的 tensor axis 是要求和的 rank,如果为 none,则表示所有 rank 都要仇和 keep_dims 求和后是否要降维 这个操作的名称,可能在 graph 中 用 已被淘汰的,被参数 axis 替代 x = tf.constant([[1, 1, 1], [1, 1, 1]])tf.reduce_sum(x, 0) # 对 tensor 的 0 级进行求和,[1,…
Tensorflow之调试(Debug)及打印变量   参考资料:https://wookayin.github.io/tensorflow-talk-debugging 几种常用方法: 1.通过Session.run()获取变量的值 2.利用Tensorboard查看一些可视化统计 3.使用tf.Print()和tf.Assert()打印变量 4.使用Python的debug工具: ipdb, pudb 5.利用tf.py_func()向图中插入自定义的打印代码, tdb 6.使用官方debu…
import tensorflow as tf import numpy as np x = tf.constant(2) y = tf.constant(3) global mask0 mask0 = np.ones(shape=[1, 6, 1], dtype='float32') def f1(): mask0[0, 0, 0] = 0. print(1) return tf.multiply(x, 17) def f2(): print(2) return tf.add(y, 23) t…
将张量进行切分 tf.split( value, num_or_size_splits, axis=0, num=None, name='split' ) value: 待切分的张量 num_or_size_splits: 切分的个数 axis: 沿着哪个维度切分…