不知道咕了多长时间的题... 讲了3遍,还是自己搞懂了.. 暂时没有找到题目链接 题意: n×m的网格,每个格子填[1,x]的数,使得不存在两行两列同构. 先保证一个,行相同. 再容斥掉列. 枚举至多可以分成k个等价类.S表示第二类斯特林数 $ans=\sum_{k=1}^{m}C(x^k,n)\times S(m,k)\times (-1)^{m-k}$ 为了使得每个方案,假设有t个实际列的等价类,使得被统计的$2^{m-k}$(就是每个相邻的列能否合并成一个等价类)配上系数,$\sum_{i…
LINK:CountTables 神题! 首先单独考虑行不同的情况 设\(f_i\)表示此时有i列且 行都不同. 那么显然有 \(f_i=(c^i)^\underline{n}\) 考虑设\(g_i\)表示此时有i列且 行列都不同. 考虑将\(g_i\)和\(f_i\)联系起来. 那么对于 \(f_m\) 考虑其有k列是本质不同的 那么有m-k列重复出现的 考虑把这m-k列给缩起来就变成了 n行k列 且行列都不同的矩阵了. 而且可以发现对于n行k列 且行列都不同的矩阵和有k列本质不同且不讲究分配…
[BZOJ4671]异或图 - xjr01 - 博客园 考虑先算一些限制少的情况 gi表示把n个点的图,划分成i个连通块的方案数 连通块之间不连通很好处理(怎么处理看下边),但是内部必须连通,就很难办了 所以再降低条件,fi表示,把n个点的图,划分成i个"连通块",保证连通块之间不会有边相连,但是内部可以不连通的方案数 fi计算方法如下: 用Bell(n)的复杂度枚举集合划分,然后相邻集合之间不能连边, 然后考虑凑出符合这个集合划分的图有多少个,异或高斯消元,xi表示第i个图选择与否,…
题意 给出一个 \(n × m\) 大小的矩形,每个位置可以填上 \([1, c]\) 中的任意一个数,要求填好后任意两行互不等价且任意两列互不等价,两行或两列等价当且仅当对应位置完全相同,求方案数 . \(n, m \le 5000\) 题解 这题是 Wearry 出的神题,根本不会做...把题解搬过来了. 首先我们有一个很简单的方式使得列之间互不等价,对于任意一列,总方案数是 \(c^n\) , 那么使得列与列之间互不相同的方案数为 \({(c^n)}^{\underline{m}}\) .…
[BZOJ4671]异或图(斯特林反演) 题面 BZOJ Description 定义两个结点数相同的图 G1 与图 G2 的异或为一个新的图 G, 其中如果 (u, v) 在 G1 与 G2 中的出现次数之和为 1, 那么边 (u, v) 在 G 中, 否则这条边不在 G 中. 现在给定 s 个结点数相同的图 G1...s, 设 S = {G1, G2, . . . , Gs}, 请问 S 有多少个子集的异 或为一个连通图? Input 第一行为一个整数s, 表图的个数. 接下来每一个二进制串…
题目 [BZOJ4671]异或图 很有意思的题 做法 直接处理显然很难,我们考虑范围扩大以求容斥或反演这类的帮助 \(f_i\)表示至少有\(i\)个联通块的方案,形如设立\(i\)个联通块轮廓,联通块内连边随意,联通块与联通块之间无连边 \(g_i\)表示恰好有\(i\)个联通块的方案,形如设立\(i\)个联通块轮廓,在保证内部联通的情况下,外部块与块间无连边 显然:\[f_x=\sum\limits_{i=x}^n\begin{Bmatrix}i\\x\end{Bmatrix}g_i\] 根…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4671 考虑计算不是连通图的方案,乘上容斥系数来进行容斥. 可以枚举子集划分(复杂度是O(Bell)).就是 dfs ,记录已经有了几个集合,枚举当前元素放在哪个集合里(给它标一个 id )或者当前元素自己开一个集合. 然后就有了限制:不同点集之间不能有边.本来想限制同一点集必须是连通的,但不好限制,所以就不限制了,把这部分的影响算在容斥系数里. 如果限制不同点集之间不能有边,可以考虑高斯消…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4671 首先,考虑容斥,就是设 \( t[i] \) 表示至少有 \( i \) 个连通块的方案数: 我们希望得到恰好有一个连通块的方案数,但这里不能直接 \( + t[1] - t[2] + t[3] - t[4] ... \),因为每个“恰好 \( i \) 个连通块”的情况并不是在各种 \( t[j] ( j<=i ) \) 中只被算了一次,而是因为标号,被算了 \( S(i,j) \…
传送门 题意: 给出\(s,s\leq 60\)张图,每张图都有\(n,n\leq 10\)个点. 现在问有多少个图的子集,满足这些图的边"异或"起来后,这张图为连通图. 思路: 直接考虑判断图的连通不好判断,所以考虑枚举连通块来进行容斥. 定义\(f_i\)表示有\(i\)个连通块的答案,发现连通块这个东西也不好处理,我们只能处理出有多少个连通块,但无法确定每个连通块内部的连通关系. 定义\(g_i\)为至少有\(i\)个连通块的方案数,那么就有关系式:\(\displaystyle…
第一类斯特林数 定义 第一类Stirling数\(s(n,m)\),也可记为\(\begin{bmatrix}n\\m\end{bmatrix}\). 第一类Stirling分为无符号第一类Stirling数\(s_u(n,m)\)和带符号第一类Stirling数\(s_s(n,m)\). 他们分别表现为其升阶函数和降阶函数的各项系数,形式如下: \[ x^{n\downarrow}=x\cdot (x-1)\cdot (x-2)\cdots (x-n+1)=\sum_{k=0}^ns_s(n,…
bzoj4671 异或图(斯特林反演,线性基) 祭奠天国的bzoj. 题解时间 首先考虑类似于容斥的东西. 设 $ f_{ i } $ 为至少有 $ i $ 个连通块的方案数, $ g_{ i } $ 为正好有 $ i $ 个连通块的方案数. 那么有 \[f_{ m } = \sum\limits_{ i = m }^{n} \begin{Bmatrix} i \\ m \end{Bmatrix} g_{ i } \] 斯特林反演就有 \[g_{ 1 } = \sum\limits_{ i =…
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4671 题解 半年前刚学计数的时候对这道题怀着深深的景仰,现在终于可以来做这道题了. 类似于一般的容斥和反演题,我们发现整个图是联通的图非常不好求.于是我们转化为整个图钦定了有 \(i\) 个块必须不连通,其余任意的方案数. 然后考虑这个怎么求,我们可以暴力枚举一下把这些数分成很多组,显然方案数就时 \(B_n\)(贝尔数,就是 \(\sum\limits_{i=0}^n \begin{Bma…
CF79D Password: 差分.两点取反,本质是匹配!最短路+状压DP 取反是套路,匹配是发现可以把操作进行目的化和阶段化,从而第二次转化问题. 且匹配不会影响别的位置答案 sequence 计算最长极长段小于等于j的方案数 突破口是i,k总共对数nlogn级别,干掉j用组合意义大力推导 CF1062F Upgrading Cities DAG考虑topo,关键性质:topo序队列中点两两不可达.只在队列长度<=2时候才关心. CF1060F Shrinking Tree 考虑x是不是rt…
数学杂烩总结(多项式/形式幂级数+FWT+特征多项式+生成函数+斯特林数+二次剩余+单位根反演+置换群) 因为不会做目录所以请善用ctrl+F 本来想的是笔记之类的,写着写着就变成了资源整理 一些有的没的的前置 导数 \(f'(x)=\lim\limits_{\triangle x\rightarrow 0}\frac{f(x+\triangle x)-f(x)}{\triangle x}\) \(\sin x:\cos x\) \(\cos x:-\sin x\) \(\ln x:\frac{…
炫酷反演魔术课件byVFK stO FDF Orz(证明全有%%%) 莫比乌斯反演 \(F(n)=\sum\limits_{d|n}f(d)\Rightarrow f(n)=\sum\limits_{d|n}\mu(\frac n d)F(d)\) \(F(n)=\sum\limits_{n|d}f(d)\Rightarrow f(n)=\sum\limits_{n|d}\mu(\frac d n)F(d)\) 推带\(\gcd\)的题常用式子:(实际上是借用了积性函数的式子) \([\gcd(…
题目链接 BZOJ5093 题解 点之间是没有区别的,所以我们可以计算出一个点的所有贡献,然后乘上\(n\) 一个点可能向剩余的\(n - 1\)个点连边,那么就有 \[ans = 2^{{n - 1 \choose 2}}n \sum\limits_{i = 0}^{n - 1} {n - 1 \choose i} i^k\] 显然要求 \[\sum\limits_{i = 0}^{n} {n \choose i} i^k\] 然后我就不知道怎么做了.. 翻翻题解 有这样一个结论: \[n^k…
题目 CF960G 做法 设\(f(i,j)\)为\(i\)个数的序列,有\(j\)个前缀最大值的方案数 我们考虑每次添一个最小数,则有:\(f(i,j)=f(i-1,j)+(i-1)*f(i-1,j-1)\),显然这是第一类斯特林数 从而我们得到一个朴素的答案:\[Ans=\sum\limits_{i=1}^{n}f_{i,a-1}×f_{n-1-i,b-1}×C_{n-1}^i\] 理解:枚举\(i+1\)为最大值添的位置,则已限制了前缀最值个数及后缀最值个数,然后再乘上前半部分所填的数 观…
基本定义 第一类斯特林数:$1 \dots n$的排列中恰好有$k$个环的个数:或是,$n$元置换可分解为$k$个独立的轮换的个数.记作 $$ \begin{bmatrix} n \\ k \end{bmatrix}. $$ 第二类斯特林数:将$n$个元素分成$k$个非空集合的方案数.记作 $$ \begin{Bmatrix} n \\ k \end{Bmatrix}. $$ 根据定义,我们有 $$ \sum_{k=0}^n \begin{bmatrix} n \\ k \end{bmatrix…
https://www.cnblogs.com/cjyyb/p/10747543.html 特征方程+斯特林反演化简式子,要注意在模998244353意义下5没有二次剩余,所以每个数都要用$a+b\sqrt{5}$的形式表示,运算类似复数. 斯特林反演的几个用法: 1.下降幂转幂:连续求和时可以通过等比数列求和公式加速. 2.幂转下降幂:类似自然数幂和地用有限微积分加速,或帮助设计DP状态. #include<cstdio> #include<algorithm> #define…
题目描述 定义两个结点数相同的图 G1 与图 G2 的异或为一个新的图 G, 其中如果 (u, v) 在 G1 与 G2 中的出现次数之和为 1, 那么边 (u, v) 在 G 中, 否则这条边不在 G 中. 现在给定 s 个结点数相同的图 G1...s, 设 S = {G1, G2, . . . , Gs}, 请问 S 有多少个子集的异 或为一个连通图? 题解 先考虑一个dp. 对于这种连通性问题的dp我们通常是设一个f数组一个g数组,然后找到这两个数组的关系. 我们定义g[i]表示恰好有i个…
任务清单 计算几何  KDtree  容斥  后缀自动机套数据结构 FFT  四边形不等式/决策单调性优化  欧拉路 KM算法  BM算法  数论 min25筛  后缀数组 吉司机线段树 生成函数  DP  替罪羊  trie  博弈论  tarjan  启发式分治 polya定理  仙人掌  最短路  CDQ分治优化DP  模拟费用流 组合数学  二项式反演 斯特林数 斯特林反演 线性代数 单纯形 模拟退火  树上高斯消元 动态点分治  fhqtreap  动态DP  插头DP  斯坦纳树 D…
看了Suma,觉得懂了85%以上. 两个月可以学这么多.方法是不懂的就学就行了. 最近学了:字符串,网络流,线段树,斯特林反演,多项式与生成函数,一些数论等.…
题意 定义两个结点数相同的图 \(G_1\) 与图 \(G_2\) 的异或为一个新的图 \(G\) ,其中如果 \((u, v)\) 在 \(G_1\) 与 \(G_2\) 中的出现次数之和为 \(1\) , 那么边 \((u, v)\) 在 \(G\) 中, 否则这条边不在 \(G\) 中. 现在给定 \(s\) 个结点数相同的图 \(G_{1...s}\) , 设 \(S = {G_1, G_2, \cdots , G_s}\) , 请问 \(S\) 有多少个子集的异或为一个连通图? \(n…
Description 题库链接 给定 \(s\) 个结点数相同且为 \(n\) 的图 \(G_1\sim G_s\) ,设 \(S = \{G_1, G_2,\cdots , G_s\}\) ,问 \(S\) 有多少个子集的异或为一个连通图. \(1\leq n\leq 10,1\leq s\leq 60\) Solution 不妨记 \(f_x\) 为连通块个数至少为 \(x\) 的方案数, \(g_x\) 为连通块恰好为 \(x\) 的方案数. 容易得到: \[f_x=\sum_{i=x}…
目录 写在前面 一类反演问题 莫比乌斯反演 快速莫比乌斯变换(反演)与子集卷积 莫比乌斯变换(反演) 子集卷积 二项式反演 内容 证明 应用举例 另一形式 斯特林反演 第一类斯特林数 第二类斯特林数 反演公式 最值反演( \(\text{min-max}\) 容斥) 公式 证明 拉格朗日插值法 简介 求解 自然数的幂的前缀和 问题提出 问题解决 代码实现 写在前面 这是继数论和组合计数类数学相关与多项式类数学相关后的第三篇数学方面内容总结.主要记录自己近期学习的一些数学方法.内容比较杂,同时也起…
题意 已知\(a_{i} = \sum_{j=1}^{i} \{^{i} _{j} \}b_{j}\), 给出\(a_{1} 到 a_{n}\) : 求\(b_{l} 到 b_{r}\)在\(1e9+7\)的意义下取模的值: \(1 \le l \le r \le n \le 10^5\) \(r-l \le 100\) \(0 \le a_{i} \lt 10^9 + 7\) 题解 Part1 斯特林反演(https://www.cnblogs.com/hchhch233/p/10016543…
[题目]E. Team Work [题意]给定n和k,n个人中选择一个大小为x非空子集的代价是x^k,求所有非空子集的代价和%1e9+7.n<=10^9,k<=5000. [算法]斯特林反演 [题解]枚举非空子集大小,则题目要求: $$ans=\sum_{i=1}^{n}\binom{n}{i}i^k$$ 对通常幂进行斯特林反演,得到: $$ans=\sum_{i=1}^{n}\binom{n}{i}\sum_{j=1}^{k}\begin{Bmatrix} k\\ j \end{Bmatri…
这个ID多元化真是个麻烦的事情...... 一会KamijouIndex一会dedicatus545一会Orion的,乱死了啊啊啊啊 数据结构 圆方树 ETT 仙人掌 可持久化树套树 数学 洲阁筛 min_25筛 min_max反演 快速插值 BSGS 二次剩余 字符串 广义SAM 回文自动机 几何(我几何跟没学一样) 凸包 半平面交 Simpson积分 扫描线 其他 斯坦纳树 分数规划 不熟悉的东西列表 Kruskal重构树[已完成] 数据结构优化建图(基本完成)[完成] 组合容斥 斯特林数,…
蒟蒻的GDOI又双叒叕考挂啦...... Day 0 && Day -1 学校月考,貌似考的还不错? 然而考完试再坐船去中山实在是慢啊......晚上10点才到酒店 wifi差评......极其不稳定,还好我的流量还有42G结余:) 11:00以前就睡了,希望第二天能考得好:) Day 1 6:30起床,早起的习惯真是好啊 吃早餐的时候排长队,学弟说餐厅的队列空间溢出了hhhhhh 考场里面居然加了隔板......感觉这可能是最严的一届GDOI了吧 密码出自<上邪>,天地合,乃…
目录 WC集训DAY2笔记 组合计数 part.1 基础知识 组合恒等式 错排数 卡特兰数 斯特林数 伯努利数 贝尔数 调和级数 后记 补完了几天前写的东西 WC集训DAY2笔记 组合计数 part.1 今天开 幕 雷 击:PKUWC没过 UPD:THUWC也没过,听说群友380过了,也是高一,我378...,WC集训完可以愉快地vanyousee了(呜呜呜 UPD2:由于我在弱校,是高中rk1(黄神MLE了...),苟进了NOIWC 写笔记,就是记结论的意思 基础知识 组合恒等式 \[ 2^n…