Hive数据倾斜解决方案】的更多相关文章

https://blog.csdn.net/yu0_zhang0/article/details/81776459 https://blog.csdn.net/lxpbs8851/article/details/9814007 https://blog.csdn.net/young_0609/article/details/84593316…
数据倾斜解决方案 数据倾斜的解决,跟之前讲解的性能调优,有一点异曲同工之妙. 性能调优中最有效最直接最简单的方式就是加资源加并行度,并注意RDD架构(复用同一个RDD,加上cache缓存).相对于前面,shuffle.jvm等是次要的. 6.1.原理以及现象分析 6.1.1.数据倾斜怎么出现的 在执行shuffle操作的时候,是按照key,来进行values的数据的输出.拉取和聚合的. 同一个key的values,一定是分配到一个reduce task进行处理的. 多个key对应的values,…
一.了解数据倾斜 数据倾斜的原理: 在执行shuffle操作的时候,按照key,来进行values的数据的输出,拉取和聚合.同一个key的values,一定是分配到一个Reduce task进行处理. 假如多个key对应的values,总共是90万,但是可能某个key对应了88万条数据,key-88万条values,分配到一个task上面去执行. 另外两个task,可能各分配到了1万条数据,可能是数百个key,对应一万条数据. 数据倾斜的现象: 发生数据倾斜的两种表现: 1.你的大部分的task…
转自:https://blog.csdn.net/xinzhi8/article/details/71455883 操作: 关键词 情形      后果 Join 其中一个表较小,但是key集中     分发到某一个或几个Reduce 上的数据远高于平均值   大表与大表,但是分桶的判断字段0值或空值过多     这些空值都由一个reduce处理非常慢 group by group by 维度过小,某值的数量过多    处理某值的reduce非常耗时 Count Distinct 某特殊值过多…
[使用场景] 两个RDD进行join的时候,如果数据量都比较大,那么此时可以sample看下两个RDD中的key分布情况.如果出现数据倾斜,是因为其中某一个RDD中的少数几个key的数据量过大,而另一个RDD中的所有key都分布比较均匀,此时可以考虑采用本解决方案. [解决方案] 对有数据倾斜那个RDD,使用sample算子采样出一份样本,统计下每个key的数量,看看导致数据倾斜数据量最大的是哪几个key. 然后将这几个key对应的数据从原来的RDD中拆分出来,形成一个单独的RDD,并给每个ke…
[使用场景] 对RDD使用join类操作,或者是在Spark SQL中使用join语句时,而且join操作中的一个RDD或表的数据量比较小(例如几百MB或者1~2GB),比较适用此方案. [解决方案] 小表join大表转为小表broadcast+map大表实现.具体为: 普通的join是会shuffle的,而一旦shuffle,就相当于会将相同key的数据拉取到一个shuffle read task中再进行join,此时就是reduce join,此时如果发生数据倾斜,影响处理性能,而此时恰好一…
Hadoop基础-MapReduce的数据倾斜解决方案 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.数据倾斜简介 1>.什么是数据倾斜 答:大量数据涌入到某一节点,导致此节点负载过重,此时就产生了数据倾斜. 2>.处理数据倾斜的两种方案 第一:重新设计key: 第二:设计随机分区: 二.模拟数据倾斜 screw.txt 文件内容 1>.App端代码 /* @author :yinzhengjie Blog:http://www.cnblogs.com/yinzh…
Hive 数据倾斜怎么发现,怎么定位,怎么解决 多数介绍数据倾斜的文章都是以大篇幅的理论为主,并没有给出具体的数据倾斜案例.当工作中遇到了倾斜问题,这些理论很难直接应用,导致我们面对倾斜时还是不知所措. 今天我们不扯大篇理论,直接以例子来实践,排查是否出现了数据倾斜,具体是哪段代码导致的倾斜,怎么解决这段代码的倾斜. 当执行过程中任务卡在 99%,大概率是出现了数据倾斜,但是通常我们的 SQL 很大,需要判断出是哪段代码导致的倾斜,才能利于我们解决倾斜.通过下面这个非常简单的例子来看下如何定位产…
[版权申明:本文系作者原创,转载请注明出处] 文章出处:http://blog.csdn.net/sdksdk0/article/details/51675005 作者: 朱培          ID:sdksdk0 Hive环境的搭建在这里也不重复说了,安装配置可以查看我的这篇文章:http://blog.csdn.net/sdksdk0/article/details/51512031.在这里主要是分享一下HQL语句实践及其函数的基本使用. 一.Hive的基本概念 在Hive中没有插入操作,…
数据倾斜导致的致命后果: 1 数据倾斜直接会导致一种情况:OOM. 2 运行速度慢,特别慢,非常慢,极端的慢,不可接受的慢. 搞定数据倾斜需要: 1.搞定shuffle 2.搞定业务场景 3 搞定 cpu core的使用情况 4 搞定OOM的根本原因等. 数据倾斜的解决方案: 解决方案一:使用Hive ETL预处理数据 方案适用场景:导致数据倾斜的是Hive表.如果该Hive表中的数据本身很不均匀(比如某个key对应了100万数据,其他key才对应了10条数据),而且业务场景需要频繁使用Spar…
在做Shuffle阶段的优化过程中,遇到了数据倾斜的问题,造成了对一些情况下优化效果不明显.主要是因为在Job完成后的所得到的Counters是整个Job的总和,优化是基于这些Counters得出的平均值,而由于数据倾斜的原因造成map处理数据量的差异过大,使得这些平均值能代表的价值降低.Hive的执行是分阶段的,map处理数据量的差异取决于上一个stage的reduce输出,所以如何将数据均匀的分配到各个reduce中,就是解决数据倾斜的根本所在.规避错误来更好的运行比解决错误更高效.在查看了…
1.数据倾斜的原理 2.数据倾斜的现象 3.数据倾斜的产生原因与定位 在执行shuffle操作的时候,大家都知道,我们之前讲解过shuffle的原理. 是按照key,来进行values的数据的输出.拉取和聚合的. 同一个key的values,一定是分配到一个reduce task进行处理的. 多个key对应的values,总共是90万. 但是问题是,可能某个key对应了88万数据,key-88万values,分配到一个task上去面去执行. 另外两个task,可能各分配到了1万数据,可能是数百个…
数据倾斜调优与shuffle调优 数据倾斜发生时的现象 1)个别task的执行速度明显慢于绝大多数task(常见情况) 2)spark作业突然报OOM异常(少见情况) 数据倾斜发生的原理 在进行shuffle的时候,必须将各个节点上相同的key拉取到某个节点上的一个task来进行处理.此时如果某个key对应的数据量特别大的话,就会发生数据倾斜.以至于大部分task只需几分钟,而个别task需要几小时,导致整个task作业需要几个小时才能运行完成.而且如果某个task数据量特别大的时候,甚至会导致…
本文转发自技术世界,原文链接 http://www.jasongj.com/spark/skew/ Spark性能优化之道——解决Spark数据倾斜(Data Skew)的N种姿势  发表于 2017-02-28 |  更新于 2017-10-17 | 本文结合实例详细阐明了Spark数据倾斜的几种场景以及对应的解决方案,包括避免数据源倾斜,调整并行度,使用自定义Partitioner,使用Map侧Join代替Reduce侧Join,给倾斜Key加上随机前缀等. 摘要 本文结合实例详细阐明了Sp…
在做Shuffle阶段的优化过程中,遇到了数据倾斜的问题,造成了对一些情况下优化效果不明显.主要是因为在Job完成后的所得到的Counters是整个Job的总和,优化是基于这些Counters得出的平均值,而由于数据倾斜的原因造成map处理数据量的差异过大,使得这些平均值能代表的价值降低.Hive的执行是分阶段的,map处理数据量的差异取决于上一个stage的reduce输出,所以如何将数据均匀的分配到各个reduce中,就是解决数据倾斜的根本所在.规避错误来更好的运行比解决错误更高效.在查看了…
数据倾斜是进行大数据计算时最经常遇到的问题之一.当我们在执行HiveQL或者运行MapReduce作业时候,如果遇到一直卡在map100%,reduce99%一般就是遇到了数据倾斜的问题.数据倾斜其实是进行分布式计算的时候,某些节点的计算能力比较强或者需要计算的数据比较少,早早执行完了,某些节点计算的能力较差或者由于此节点需要计算的数据比较多,导致出现其他节点的reduce阶段任务执行完成,但是这种节点的数据处理任务还没有执行完成. 在hive中产生数据倾斜的原因和解决方法: 1)group b…
倾斜的原因: 使map的输出数据更均匀的分布到reduce中去,是我们的最终目标.由于Hash算法的局限性,按key Hash会或多或少的造成数据倾斜.大量经验表明数据倾斜的原因是人为的建表疏忽或业务逻辑可以规避的. 解决思路: Hive的执行是分阶段的,map处理数据量的差异取决于上一个stage的reduce输出,所以如何将数据均匀的分配到各个reduce中,就是解决数据倾斜的根本所在 具体办法: 内存优化和I/O优化: 驱动表:使用大表做驱动表,以防止内存溢出:Join最右边的表是驱动表:…
数据倾斜是进行大数据计算时最经常遇到的问题之一.当我们在执行HiveQL或者运行MapReduce作业时候,如果遇到一直卡在map100%,reduce99%一般就是遇到了数据倾斜的问题.数据倾斜其实是进行分布式计算的时候,某些节点的计算能力比较强或者需要计算的数据比较少,早早执行完了,某些节点计算的能力较差或者由于此节点需要计算的数据比较多,导致出现其他节点的reduce阶段任务执行完成,但是这种节点的数据处理任务还没有执行完成. 在hive中产生数据倾斜的原因和解决方法: 1)group b…
数据倾斜是进行大数据计算时最经常遇到的问题之一.当我们在执行HiveQL或者运行MapReduce作业时候,如果遇到一直卡在map100%,reduce99%一般就是遇到了数据倾斜的问题.数据倾斜其实是进行分布式计算的时候,某些节点的计算能力比较强或者需要计算的数据比较少,早早执行完了,某些节点计算的能力较差或者由于此节点需要计算的数据比较多,导致出现其他节点的reduce阶段任务执行完成,但是这种节点的数据处理任务还没有执行完成. 在hive中产生数据倾斜的原因和解决方法: 1)group b…
何谓数据倾斜?数据倾斜指的是,并行处理的数据集 中,某一部分(如Spark的一个Partition)的数据显著多于其它部分,从而使得该部分的处理速度成为整个数据集处理的瓶颈. 表现为整体任务基本完成,但仍有少量子任务的reduce还在运行. 数据倾斜的原因: 1.join 一个表较小,但key集中,分发到一个或者几个reduce上的数据远高于平均值: 大表与大表关联,但分桶的判断字段0值或者空值过多,这些空值或者0值都由一个reduce处理 2.group by 分组的维度过少,每个维度的值过多…
卧槽草草 来源于其它博客: 貌似我只知道group by key带来的倾斜 hive在跑数据时经常会出现数据倾斜的情况,使的作业经常reduce完成在99%后一直卡住,最后的1%花了几个小时都没跑完,这种情况就很可能是数据倾斜的原因,解决方法要根据具体情况来选择具体的方案 1.join的key值发生倾斜,key值包含很多空值或是异常值 这种情况可以对异常值赋一个随机值来分散key 如: select userid,name from user_info a join( select case w…
数据倾斜是进行大数据计算时常见的问题.主要分为map端倾斜和reduce端倾斜,map端倾斜主要是因为输入文件大小不均匀导致,reduce端主要是partition不均匀导致. 在hive中遇到数据倾斜的解决办法: 一.倾斜原因:map端缓慢,输入数据文件多,大小不均匀 当出现小文件过多,需要合并小文件.可以通过set hive.merge.mapfiles=true来解决. set hive.map.aggr=true; //map端部分聚合,相当于Combiner,可以减小压力(默认开启)…
数据倾斜产生的原因 数据倾斜的原因很大部分是join倾斜和聚合倾斜两大类 Hive倾斜之group by聚合倾斜 原因: 分组的维度过少,每个维度的值过多,导致处理某值的reduce耗时很久: 对一些类型统计的时候某种类型的数据量特别多,其他的数据类型特别少.当按照类型进行group by的时候,会将相同的group by字段的reduce任务需要的数据拉取到同一个节点进行聚合,而当其中每一组的数据量过大时,会出现其他组的计算已经完成而这个reduce还没有计算完成,其他的节点一直等待这个节点的…
数据倾斜问题剖析 数据倾斜是分布式系统不可避免的问题,任何分布式系统都有几率发生数据倾斜,但有些小伙伴在平时工作中感知不是很明显,这里要注意本篇文章的标题-"千亿级数据",为什么说千亿级,因为如果一个任务的数据量只有几百万,它即使发生了数据倾斜,所有数据都跑到一台机器去执行,对于几百万的数据量,一台机器执行起来还是毫无压力的,这时数据倾斜对我们感知不大,只有数据达到一个量级时,一台机器应付不了这么多的数据,这时如果发生数据倾斜,那么最后就很难算出结果. 本文首发公众号[五分钟学大数据]…
一.现象 map/reduce程序执行时,reduce节点大部分执行完毕,但是有一个或者几个reduce节点运行很慢,导致整个程序的处理时间很长,这是因为某一个key的条数比其他key多很多(有时是百倍或者千倍之多),这条key所在的reduce节点所处理的数据量比其他节点就大很多,从而导致某几个节点迟迟运行不完,此称之为数据倾斜. 二.具体情况及解决 1. join的key值发生倾斜 1) key值包含很多空值或是异常值 如果需要这些值,可以给这些值赋一些随机值: select userid…
Spark 数据倾斜解决方案 2017年03月29日 17:09:58 阅读数:382 现象       当你的应用程序发生以下情况时你该考虑下数据倾斜的问题了: 绝大多数task都可以愉快的执行,总有那么个别task比较慢.比如,假设有10000个task,其中9998个task都很快的给出了结果,还剩那两个慢的拖慢了整个应用,这种情况很常见. 原本能够正常执行的Spark作业,某天突然报出OOM(内存溢出)异常,这种情况比较少见. 为什么会出现数据倾斜发生? 在进行shuffle的时候,必须…
一.数据倾斜发生的原理 原理:在进行shuffle的时候,必须将各个节点上相同的key拉取到某个节点上的一个task来进行处理,比如按照key进行聚合或join等操作.此时如果某个key对应的数据量特别大的话,就会发生数据倾斜.数据倾斜只会发生在shuffle过程中.常用的并且可能会触发shuffle操作的算子:distinct.groupByKey.reduceByKey.aggregateByKey.join.cogroup.repartition等. 表现:Spark作业看起来会运行得非常…
最详细10招Spark数据倾斜调优 数据量大并不可怕,可怕的是数据倾斜 . 数据倾斜发生的现象 绝大多数 task 执行得都非常快,但个别 task 执行极慢. 数据倾斜发生的原理 在进行 shuffle 的时候,必须将各个节点上相同的 key 的数据拉取到某个节点 上的一个 task 来进行处理,比如按照 key 进行聚合或 join 等操作.此时如果某个 key 对应的数据量特 别大的话,就会发生数据倾斜. 数据倾斜的危害 当出现数据倾斜时,小量任务耗时远高于其它任务,从而使得整体耗时过大,…
1.数据倾斜 数据倾斜指的是,并行处理的数据集中,某一部分(如Spark或Kafka的一个Partition)的数据显著多于其它部分,从而使得该部分的处理速度成为整个数据集处理的瓶颈. 数据倾斜俩大直接致命后果. 1.数据倾斜直接会导致一种情况:Out Of Memory. 2.运行速度慢. 主要是发生在Shuffle阶段.同样Key的数据条数太多了.导致了某个key(下图中的80亿条)所在的Task数据量太大了.远远超过其他Task所处理的数据量. 一个经验结论是:一般情况下,OOM的原因都是…
转自:http://my.oschina.net/leejun2005/blog/100922 最近几次被问到关于数据倾斜的问题,这里找了些资料也结合一些自己的理解. 在并行计算中我们总希望分配的每一个task 都能以差不多的粒度来切分并且完成时间相差不大,但是集群中可能硬件不同,应用的类型不同和切分的数据大小不一致总会导致有部分任务极大的拖慢了整个任务的完成时间,硬件不同就不说了,应用的类型不同其中就比如page rank 或者data mining 里面一些计算,它的每条记录消耗的成本不太一…